We study links using the crossing-ball technique of W. Menasco and define special positions for spanning surfaces in link complements. We show that if a given spanning surface is in special position, then the boundary of a neighborhood of the surface is in standard position. Thus we can work on a closed surface in the link complement instead of working on a surface with boundary. We also mension that if a link admits an almost alternating diagram, then we can cut its spanning surface to be in special position.