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1. Weyl-Clifford algebras

In this section we define Weyl algebras, Clifford algebras and their
tensor product which we call “Weyl Clifford algebras”. The definition
here is somewhat makeshift manner. We are not defining the most
general object of what are called Weyl/Clifford algebras, but we take
a special case with a special structure constatns. One more thing we
need to be care about is that we use an extra variable C to homogenize
the whole story. It will be then easy afterwards to consider “Proj” of
our algebras to construct things that are proper(“compact”).

1.1. The base field k and base ring k1. In this paper, we fix a base
field k and its extension commutative ring k1. We choose a specific
element h ∈ k1. By adding an element h in this way, we may obtain a
“commutative case” by specializing h to 0. In later sections k will be
a field of characteristic p ̸= 0 and k1 will be the ring k[h, 1

1−hp−1 ].

1.2. Weyl algebras. Weyl algebras play a role of function spaces on
flat affine space. They are also studied extensively in the context of
algebraic D-modules.

Definition 1.1. Let k,k1 be a commutative rings as in subsection 1.1.
Let h be an element of k1. The Weyl algebra is the following algebra.

Weyl
(h,C)
n+1 = k1[C,X0, X1, . . . , Xn, X̄0, X̄1, . . . , X̄n]

where Xi, X̄j are subject to the following canonical commutation rela-
tions (CCR):

[X̄i, Xj] = hCδij (Kronecker’s delta),

[X̄i, X̄i] = 0,

[XiXj] = 0. (i, j = 0, 1, 2, . . . , n).

C, h are both central.
1
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C is a variable to homogenize the whole story.
When the base field k is of characteristic p > 0, we note that the

following identity holds. It will be needed in later arguments.

(1.1) (XiX̄i)
p − (hC)p−1XiX̄i = Xp

i X̄
p
i (i = 0, 1, 2, . . . , n).

1.3. CAR(Clifford algebra). We use Clifford algebras to study non-
commutative analogue of “differential forms”. (To be more accurate,
since we are not using the most general form of Clifford algebras, we
should refer to our algebras as “Clifford algebras of a special type”.)

Definition 1.2. Let k,k1 be a commutative rings as in subsection 1.1.
Let h be an element of k1. We define the Clifford algebra as follows.

Cliff
(h,C,k)
n+1 = k1[C, k, E0, . . . , En, Ē0, . . . , Ēn]

where the generators satisfy the following canonical anti-commutation
relations(CAR):

[Ēi, Ej]+ = Chkδij

[Ēi, Ēj]+ = 0

[Ei, Ej]+ = 0

Here again C, h, k are central elements.

Later we will use the elements Ei as analogue of differential 1-forms.
The reader might then feel somewhat strange about the constant k.
Later we will see that, when dealing with projective spaces, the variable
k act as a constant (more appropriately, a (1, 1)-form ) which represents
the “curvature” of the space. In other words, it will be regarded as the
“Kähler form” (which is the same thing as the curvature since Pn is
Kähler-Einstein.)

Note that

(EiĒi)
2 = khCEiĒi

holds so that we have, when char(k) = p > 0,

(1.2) (EiĒi)
p = (khC)p−1EiĒi.

1.4. Weyl-Clifford algebra.

Definition 1.3. For any non negative integer n,m, we define Weyl-
Clifford algebra as a tensor product

WC
(h,C,k)
n+1,m+1 = Weyl

(h,C)
n+1 ⊗k1[C]Cliff

(h,C,k)
m+1 .
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We are mainly interested in the case where n = m. In such a case we
define

WC
(h,C,k)
n+1 = Weyl

(h,C)
n+1 ⊗k1[C]Cliff

(h,C,k)
n+1 .

As a non-commutative analogue of “the space of differential form
on A2(n+1) with polynomial coefficients”, we employ the Weyl-Clifford

algebra WC
(h,C,k)
n+1 .

Note that the number n of even variables ({Xi, X̄i}ni=0) and the
number m of even variables( {Ei, Ei}ni=0) are equal. This may not
be a ”natural” assumption, but we employ the assumption to keep up
with the ordinary theory of differential forms.

Later, when we deal with “non-commutative projective varieties”.
we will often encounter a situation where the number of odd variables
(“forms”) on our varieties may be bigger then the dimension of the
variety.

1.5. the degree and the signed degree. We introduce the degree
and the signed degree on WC. They are determined as follows:

deg(Xi) = 1, deg(X̄i) = 1, deg(Ei) = 1, deg(Ēi) = 1, deg(C) = 2.

sdeg(Xi) = 1, sdeg(X̄i) = −1, deg(Ei) = 1, sdeg(Ēi) = −1, sdeg(C) = 0.

1.6. GL-action. TheWeyl Clifford algebra admits a GL-action. Namely,
for any element (gij) ∈ GLn+1(k), we have

Xi 7→
∑
j

gijXj

X̄k 7→
∑
l

ğklXl

Ei 7→
∑
j

gijEj

Ēk 7→
∑
l

ğklEl

where (ğkl) is the transpose of the inverse of (gij):∑
j

gij ğkj = δik.

The Weyl Clifford algebra thus has a pretty large symmetry so that
we may use it to study local picture of WC by studying specific open
set. For example we will concentrate on an openset “U♡” to see if our
main result holds. We will further concentrate on “x′

1 ̸= 0” to finish
the proof of the main proposition.
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2. super commutator and super adjoint

2.1. Form degree and the super algebra structure of WC. We
define the form degree of elements of WC by

fdeg(Xi) = 0, fdeg(X̄i) = 0, fdeg(Ei) = 1, fdeg(Ēi) = −1,

fdeg(k) = 2, fdeg(h) = 0, fdeg(C) = 0.

We employ the super algebra structure of the Weyl Clifford algebra WC
defined in the preceding section by using fdeg as the super grading.

2.2. commutators and adjoints in super algebras. Before pro-
ceeding further, we note here a general notations and definitons about
super algebras. Unlike other part of this paper, in this subsection we
let A be an arbitrary super algebra. For any homogeneous elements
f, g of the algebra A, we define their super commutator [f, g] as

[f, g]
def
= fg − (−1)f̂ ĝgf

where f̂ , ĝ are their super degree. We extend the super commutator
linearly and define it for any pair of the algebra A 1.

For any element a of A, we define the super adjoint ad(a) as

ad(a) : A ∋ x 7→ [a, x] ∈ A.

Please note onece again that we are taking super commutators.

3. Some important elements and operators.

In this section we introduce derivations ∂, ∂̄ on WCn+1. To do that, it
is useful to introduce special elements ε and ε̄. They are also important
by themselves.

3.1. GL-invariant elements ε, ε̄. The algebra WC has the following
specific GL-invariant elements

ε =
∑
i

X̄iEi, ε̄ =
∑
i

XiĒi

1When dealing with degrees, we often need to study first the case where elements
are homogenous and then exntend it afterwards to the general case where elements
are no longer homogenous. From this footnote on, when such occasion arise, we
only deal with homogenous elements without mention. Extension to the general
case should be easy.
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3.2. ∂, ∂̄ as the GL-invariant derivations. By a general theory (easy
calculation) of super algebras, we know that the adjoint operators
ad(ε), ad ε̄ are odd derivation of the algebra WC. By calculating their
action on generators of WC, we see that there exist odd derivations
∂, ∂̄ on WC such that the relations

hC∂ = ad ε, hC∂̄ = − ad ε̄

hold. In other words, ∂ and ∂̄ are the odd derivations on WC whose
actions on the generators are summarized as follows:

∂ :


Xi 7→ Ei

X̄i 7→ 0

Ei 7→ 0

Ēi 7→ kX̄i.

∂̄ :


Xi 7→ 0

X̄i 7→ Ēi

Ei 7→ −kXi

Ēi 7→ 0.

Yes, we may use division by hC and write:

∂ =
1

hC
ad(ε), ∂̄ =

1

hC
ad(ε̄).

This is possible since WC is a free module over k1[C].
We also note:

(3.1) ∂̄ε = −µ0.

For an element µ0 defined in the next section.

3.3. Normal ordering. There are a lot of good account on normal
orderings. The one the author learned on the subject is [2], which is
very concise and mathematically clear.

In short, by employing certain order on variables, we may , by us-
ing commutation relations, choose a suitable basis on Weyl, Clifford
algebras. For example, in our case the following proposition holds.

Proposition 3.1. WCn+1 is a free module over k1 with the basis

{XIX̄JEKĒLCskt; I, J ⊂ Nn+1, K, L ⊂ (N<p)
n+1, s, t ∈ N}

where we put
N = Z≥0 = {0, 1, 2, . . . }.

4. The element µ1 and our main algebra A

4.1. Important assumptions. From this section on, We assume char(k) =
p > 0 and assume h /∈ F×

p . In other words, we will use

k1 = k[h,
1

hp−1
]

as a coefficient ring instead of k[h].
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4.2. The element µ1. For any R ∈ k, let us consider the following
specific element of WC.

µR = k
∑
i

XiX̄i +
∑
i

EiĒi −RkC.

It essentially gives a signed degree

ad[µR, f ] = sdeg(f)f (f ∈ WC).

We would like to add a constraint µ1 = 0 on WC and obtain our target
algebra A. Later we will see that in our algebra A, k is torsion free
and may say that the equation∑

i

XiX̄i + (
1

k

∑
i

EiĒi) = C

holds in A. By using the equations (1.1) and (1.2), we see

(4.1)
∑
i

Xp
i X̄

p
i = (1− hp−1)Cp

So we are considering the “sphere Sn+1”.
Some readers may prefer considering more “natural” condition

“
∑
i

XiX̄i = 1 ”

. But this condition, it seems, is not the right one to study for our
purpose. For if we put the condition

∑
i XiX̄i = 1 and assume also

that our theory has good partial derivations ∂ and ∂̄, we would have
µ0 = ∂(

∑
iXiX̄i − 1) = 0, which is stronger than our assumption.

We note also that we could have chosen µR = 0 for a constant other
than 1. It is easy to see that it is actually h/R that matters for the
structure of A: by adjusting “scales”, we may assume R = 1 as we do
in this paper.

4.3. A as the ”Marsden-Weinstein quotient”. Since WC is a non-
commutative ring, it is not a good idea to consider such thing as the
quotient ring WC /(µ1) of WC by a both-sided ideal (µ1) of WC gen-
erated by µ1. If we try to see it in physics way, we need to drop off
elements which are ”canonical conjugate” to µ. If we try to see it in
mathematics way, we need to consider the left ideal J = WC ·µ1 and
its idealizer

I(J) = {f ∈ WC; Jf ⊂ J}.
We then consider the quotient algebra

MW(WC; J)
def
= I(J)/J.
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A reader who is familiar with symplectic geometry may notice, by using
the usual commutator-versus-poisson-bracket-correspondence, that the
quotient MW(WC; J) is a non commutative counterpart of the notion
known as the Marsden-Weinstein quotient.

To study the object further, let us note that for any f ∈ WC, we
have

(4.2) [µ1, f ] = sdeg(f)

where sdeg(f) is the signed degree of f , given by

sdeg(Xi) = 1, sdeg(X̄i) = −1, sdeg(C) = 0.

When the base field k is a field of characteristic 0, the commutation
relation (4.2) will yield the equation

I(J) = (WC)0 +WCµ1,

so that we have the following description of the quotient.

(4.3) MW(WC; J) = I(J)/J = (WC)0/(µ1).

When the characteristic of the base field k is equal to p ̸= 0, The
equation is not true any more, due to the fact that there are lots of
elements with 0 derivatives, such as Xp

0 .
To take advantage of parallelism between characteristics p and 0, we

employ the right hand side of the equation (4.3) as a “better version”
of the quotient, regardless of the characteristic of k. Thus we define:

Apre = (WC)0/(µ1).

Apre defined above has a somewhat tricky part. It has k-torsions
which are not easy to handle. Instead, we avoid such k-torsions

A = Apre/(k-torsions) = Image(Apre → Apre[
1

k
]).

5. the central subalgebra Z of A

We define

Z = k1[{Xp
i X̄

p
j }ni,j=0]

Proposition 5.1. X = Proj(Z) is isomorphic to the cartesian product
Pn × Pn of projective spaces as a k1-scheme. A corresponds, (via the
usual theory of correspondence between the graded Z-modules and the
quasi coherent modules on X), to a quasi coherent OX-algebra.
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Proof. The reader may notice the resemblance of Z and the projective
coordinate ring of the Segre embedding of Pn ×Pn. Using the “normal
ordering” (Proposition 3.1) we see that there is no relation in {Xp

i X̄
p
j }

other than the usual quadratic relations of Segre embedding.
□

Proposition 5.2. We have:

(1) A is a graded algebra over the graded ring Z and so defines the
associated quasi-coherent sheaf A on Proj(Z) = Pn × Pn.

(2) For any n ∈ N, A/knA is a coherent OProj(Z)-module.

Proof. We only need to prove (2). As we have already mensioned in
equation (4.1), we have

Cp =
1

1− hp−1
(
∑
i

Xp
i X̄

p
i ).

The rest followis from (Proposition 3.1).
□

5.1. A note on Proj. In common textbook of (commutative) alge-
braic geometry (like [1]), projective schemes Proj(A) are considered
for graded algebras A which are generated by the set A1 of elements of
degree one.

In this paper we need to consider a little bit different situation. Let
us explain it here.

Let p be a positve integer. Let A,Z be graded algebras satisfying the
following hypothesis:

(*)

#

"

 

!

A: Z-graded algebra genearated by elements of degree 1.
Z: pZ-graded algebra genearated by elements of degree p.
∃{Uλ} : an open covering of Proj(Z), ∃{xλ} ⊂ A1 ∃{yλ} ⊂ A
homogenious such that for each λ, zλ := xλyλ is central in A
and is invertible on Uλ.

Let us consider in this subsection the situation as in the hypothesis
above. Let us note that, by “rescaling the grading” by 1/p, Proj(Z) is
defined in the usual way. But after the “rescaling”, A (and usual Z-
graded A-modules M) are no longer Z-graded. Let us consider (in the
language of grading before the “rescaling”,) ApZ = ⊕k∈ZApk instead.
We may then properly define sheafA of algebra over Proj(Z) by putting

A
def
= ÃpZ

where the tilde sign which appears in the right hand side is the usual
“sheafification” of ApZ. For any graded A-module M , the “associated
sheaf” M on Proj(Z) is defined in the same way.
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We of course need to remind ourselves about the modulesA1, A2, . . . Ap−1

and M1,M2, . . .Mp−1. These things are regained by considering the
Serre twist:

Definition 5.1. Under the hypothesis (*), we define a sheaf of modules
A(n) for any integer n. It is a sheafification of a presheaf A(n)pre

defined as follows:

A(n)pre(U) =

f−1a;

f, a ∈ A(U)homogeneous,

f : invertible on U,

deg(f) + n = deg(a)


For any graded A-module M , we define a presheaf M(n)pre as

M(n)pre(U) =

f−1m;

m ∈ Mhomogeneous,

f ∈ Ahomogeneous,

f : invertible on U,

deg(f) + n = deg(a)


and define M(n) as the sheafification

Proposition 5.3. Under the hypothesis (*), A(n)pre and M(n)pre are
indeed presheaves on Proj(Z). Moreover, the following facts are true.

(1) If an element x ∈ A1 is invertible on an open set U , then x is
a generateing section on U of A(1) over A-module.

(2) If an section x ∈ A1 is invertible on an open set U , then for
any d ∈ Z and for any m ∈ Md, mxn−d is a section of M(n).

(3) Let {Uλ} and {zλ} as in the hypothesis (*). Then:

M(n)(Uλ) = {mz−k
λ ;m ∈ M, deg(m)− k deg(zλ) = n}.

In particular, it does not matter, when we conder A(n), whether
we regard A as a left A-module (as we usually do in this paper)
or a right A-module.

(4) A(n) is a locally free left A-module of rank one.
(5) A(n) is also a locally free right A-module of rank one.
(6) M(n) ∼= A(n)⊗A M.
(7) A(n)⊗A A(m) ∼= A(n+m).

6. local terms

As we have described, the algebras we have constructed, such as WC
, (WC)0, A

pre and A, contains Z as a graded sub-algebra, and thus may
be regarded as a sheaf of algebras over Proj(Z) = Pn×Pn. It would be
important to use local coordinates and describe the situation locally
and understand the algebras more clearly.
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Let us consider an open set U♡ = {Xp
0 ̸= 0}(∼= An × Pn) of Pn × Pn.

For any graded module M over the graded ring Z, let us denote by
M♡ the “localization” of our objects to U♡. To be more accurate, we
consider the graded module

M♡ =
∞⊕
s=0

Γ(U♡, M̃ ⊗ (OPn ⊠ OPn(s)))

of global sections of sheaf M̃ on Proj(Z) associated to M . Let us begin
by the Weyl Clifford algebra:

WC♡ = WC[X−1
0 ].

It has the 0-part:

(WC)♡0 = k1[k, C, x0, . . . , xn, x
′
0, . . . , x

′
n, e0, . . . , en, e

′
0, . . . , e

′
n]

where we put

xi = XiX
−1
0 , x′

i = X0X̄i, ei = EiX
−1
0 , e′i = X0Ēi.

Note that we have x0 = 1 so we can drop it off. ***We need the two-
stage conformation of the commutation relation.*** The generators
which appear above satisfy the following CCR and CAR:�

�
�
�

[xi, xj] = 0, [x′
i, x

′
j] = 0, [x′

i, xj] = hCδij (i, j = 1, . . . , n)

[ei, ej]+ = 0, [e′i, e
′
j]+ = 0, [e′i, ej]+ = Chkδij (i, j = 0, 1, . . . , n).

Let us next consider the localzation A♡ of our main object A. It is
a quotient of (WC)♡0 . The main relation is given by

µ1 = k
∑
i

xix
′
i +

∑
eie

′
i − kC = 0.

Since we deleted k-torsions, we may as well write:

1

k

∑
i

eie
′
i = C −

∑
i

xix
′
i.

Let us put the left hand side of the equation asm and rewrite the above
equation as

x′
0 = C −

n∑
i=1

xix
′
i −m.

Then by using this equation we may eliminate the variable x′
0 and

obtain the following expression of A♡.
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�

�

�
A♡ = k[k, h, C, x1, . . . , xn, x

′
1, . . . , x

′
n, e0, . . . , en, e

′
0, . . . , e

′
n,m].

(m =
1

k

n∑
i=0

eie
′
i)

The generators which appear above satisfy the following CCR and
CAR:�

�
�
�

[xi, xj] = 0, [x′
i, x

′
j] = 0, [x′

i, xj] = hCδij (i, j = 1, . . . , n)

[ei, ej]+ = 0, [e′i, e
′
j]+ = 0, [e′i, ej]+ = Chkδij (i, j = 0, 1, . . . , n).

In other words, A♡ is an algebra obtained by adjoining an element m
to an algebra k[k, h, C, x1, . . . , xn, x

′
1, . . . , x

′
n, e0, . . . , en, e

′
0, . . . , e

′
n] which

is isomorphic to the tensor product Weylh,Cn ⊗k[h,C]Cliff
h,C,k
n+1 of a Weyl

algebra and a Clifford algebra. We note that this isomorphism preserves
the ‘anti holomorphic’ derivation ∂̄. and that it does not preserve the
‘holomorphic’ derivation ∂.

7. structure of A♡

There exists an algebra WC♡
(0) such that the open set U♡ = {X0 ̸=

0} ⊂ Proj(WC(0) is identified with Proj(WC(0)).

WC♡
(0) = k1[C, k, {xi, x

′
i, ei, e

′
i}ni=0].

A♡ = k1[C, k, {xi, x
′
i, ei, e

′
i}ni=0,m].

m =
1

k

n∑
i=0

eie
′
i

Proposition 7.1.

A♡ = k1[C, k, {xj, x
′
j}nj=1, {ei, e′i}ni=0,m].

We define:
B = k[h, k, C, {xj, x

′
j, ej, e

′
j}].

It is isomorphic to WCn

「城崎」にあるように、 A♡ の ∂̄-cocycle は
1

k
∂̄(e0b)

e0b: cocycle in A♡/kA♡. の形である。

A♡ = e0B[m] + e0B[m]ε̄+B[m] + B[m]ε̄
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e0A
♡ = e0B[m] + e0B[m]ε̄

部分積分により、コサイクルは
1

k
(e0f); f ∈ B[m]

の形に直せる。m の次数を最小に取ろうとすると、m に関して最高次
の係数を見ることにより、

1

k
(e0f); f ∈ B

の形のものに限って良いことがわかる。
X0X̄1 ̸= 0 で考えてみると、

b ∈ A♡
sparse

の場合のみで良い。

e0B = e0R

R は半径の 2乗の方ではなく、dx, ∂̄x′ で生成される、いわば通常の
form の空間。

DeRham, Dolbeault cohomologyの関係に持ち込める。ただし、
∑

eie
′
i =

km の部分だけずれる。∑
eie

′
i = 0 (mod k)

で、
∑

eie
′
i は ∂̄ϵ なので、 1

k
∂̄(e0ϵ) がでてくる。これが cocycles.

8. Asparse

Analogue of Deligne-Illusie theory.

(A, ∂̄) ⊃ (Asparse, 0)

quasi isomorphism
Asparse

∼= ∃S ⊠ Ω•
sparse

S is an extension:
0 → Ω• → S → Ω• → 0

whose extension class corresponds to the generator of H1,1 via

H1,1 = H1(Pn,Ω1) ∼= Ext1Pn(O,Ω1) → Ext1Pn(Ω•,Ω•)

H•(A, ∂̄) ∼= k[η]⊗k k[Λ]

関係式:
η2 = 0, Λn+1 = 0.

k[Λ] は Pn の cohomology 環.
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9. Asparse,V

V :variety ⊂ Pn に対して、

AV := A/(IpV , Ī
p
V )

と定義する。

AV ∼
q.i

Asparse,V

Asparse,V
∼= SV ⊠ ΩV,sparse

RiΓ(Asparse,V , ∂̄) ∼= H(SV )⊗H(V,Ω)
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