next up previous contents
Next: injectivity () Up: Reduced trace and reduced Previous: calculation of reduced trace   Contents

invariance of trace and inversion formula

Lemma 15   Let $ k$ be a field of characteristic $ p$. Let $ \phi$ be a $ k$-endomorphism of $ A_n(k)$. Let $ I,J$ be an element of $ \{0,1,2,\dots,p-1\}^n$ (multi-index). Then for any $ f \in Z(A_n(k))$, we have

\begin{displaymath}
\operatorname{trd}( \phi(\xi^I \eta^J f))=
\begin{cases}
-\...
... } I=J=(p-1,p-1,\dots,p-1) \\
0 & \text{otherwise}
\end{cases}\end{displaymath}

This is the same as Corollary 5. One may also prove this by using Corollary 2.

$ \qedsymbol$

ARRAY(0x8ed5254)

For any index set $ I\in \mathbb{N}^{2n}$, we denote by $ I^c$ the index set $ (p-1,p-1,\dots,p-1)-I$.

Corollary 7   Let $ k$ be a field of characteristic $ p$. Let $ \phi$ be a $ k$-endomorphism of $ A_n(k)$. Assume we are given a set of $ p^{2n}$ elements $ \{f_{I J} \in Z(A_n(k)); I,J \subset \{0,1,2,\dots,p-1\}^n\}$. Let $ M$ be the maximum of total degree of $ \phi(\xi_1),\dots,\phi(\xi_n)$, $ \phi(\eta_1),\dots,\phi(\eta_n)$. Then for any set $ \{f_{I J}\}$ of $ p^{2n}$ elements of $ Z(A_n(k))$, we have

$\displaystyle \operatorname{totaldeg}(\phi(\sum_{I,J}f_{I J} \xi^I \eta^J ))
\geq
\max_{I,J}(\operatorname{totaldeg}\phi(f_{I J}))-Mp^{2n}
$

Put $ F=\phi(\sum_{I,J} f_{I J}\xi^I \eta^J )$. Then

$\displaystyle \operatorname{trd}F \phi(\eta)^{J^c} \phi(\xi)^{I^c}= f_{I J}
$

Thus $ \operatorname{totaldeg}(F\phi(\eta)^{J^c}\phi(\xi)^{I^c})\geq \operatorname{totaldeg}(f_{I J})$. Noting that total degree is additive ( $ \operatorname{totaldeg}(F G)=\operatorname{totaldeg}(F)+\operatorname{totaldeg}(G)$), we complete the proof.

$ \qedsymbol$

Proposition 1 (inversion formula)   Let $ k$ be a field of characteristic $ p$. Assume we have an injective algebra endomorphism $ \phi$ of $ A_n(k)$. We use the notation $ \overline{\xi_i}=\phi(\xi_i)$, $ \overline{\eta_j}=\phi(\eta_j)$. Then for any element $ x\in A_n(k)$, we have

$\displaystyle x=-\sum_{I,J} \operatorname{trd}(x \overline{\eta}^{J^c} \overline{\xi}^{I^c})
\overline{\xi}^I\overline{\eta}^J
$

Corollary 8   Under the assumption of the Lemma above, if elements $ \operatorname{trd}(\xi_i \overline{\eta}^{J^c} \overline{\xi}^{I^c}) $, $ \operatorname{trd}(\eta_i \overline{\eta}^{J^c} \overline{\xi}^{I^c}) $ $ (i=1,\dots,n)$ are all constants, then $ \phi$ is invertible.

ARRAY(0x8ec301c)


next up previous contents
Next: injectivity () Up: Reduced trace and reduced Previous: calculation of reduced trace   Contents
2003/3/3