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Part 1. What we are talking about.

1. Introduction

In this talk we consider a non commutative version of the Kähler
manifold Pn(C). We would like to consider it when the base field k is
of characteristic p non zero. Well this may be quite confusing from the
beginning. What is “Pn(C)” over a field k? In terms of (a little bit
sophisticated) mathematics, we may explain our situation as follows:
For the complex projective space Pn

C, We consider its Weil restriction
ResC/R(P

n
C) and consider its base extension P = ResC/R(P

n
C) ×R C.

What we call “holomorphic” and “anti-holomorphic local functions on
Pn(C) are understood to be a holomorphic function on P . The reader
may soon realize that our P is isomorphic to the product Pn×Pn. The
space P is actually defined over Z, so we may consider P over any base
field k. This is what we call “Pn(C) over a base field k”. You see? The
idea is easy. In local terms, let us consider a set of local coordinates
z1, . . . , zn and its “complex conjugate” z̄1, . . . z̄n. All we need to then is
to reconsider z1, . . . , zn, z̄1, . . . , z̄n as a set of 2n independent variables.
There is one thing we need to be careful, though: We would think that
the Kähler structure of Pn(C) may then be interpreted as a holomorphic
non degenerate 2-form on P . This is not true. For example, consider
the case where n = 1. In terms of the affine coordinate z, the Kähler
form is given by

dzdz̄

1 + zz̄
.

The form is surely well-defined on P1. However, when we consider it
on P , that means, when we consider z and z̄ as independent variables,
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the form is not holomorphic any more. It has an obvious pole at “
1 + zz̄ = 0”. We need to come to this point again later.
Now, as we said, our objective here is to consider a non commutative

version of P = ResC/R(P
n
C) ×R C. As such, Our “non commutative

space” is different from what we have used in my papers [4], [5].

2. Prototype

2.1. Marsden Weinstein quotient. In this section let us explain a
prototype of what we will do in this talk. To do so, we first review
a technique of taking quotient in the world of symplectic manifold,
namely, the Marsden Weinstein quotient. The entry in wikipedia:

https://en.wikipedia.org/wiki/Moment_map

is good enough to consult.
Let us consider the procedure of taking usual quotient

Pn(C) = Cn+1/C×.

There are some points to notice:

• The complex Lie group C× is a complexification of a compact
Lie group S1.

• The moment map of the S1 action is given by

ω

R =
∑

i

XiX̄i −R

(where X0, . . .Xn are linear coordinates. Bar here means the
usual complex conjugation.) The moment map here means that
the differential 1-form d ω

R corresponds, via the duality caused
by the Kähler form ω =

∑

i dXidX̄i, to the vector field v on Cn

which is equal to the infinitesimal action of LieS1. In terms of
Poisson bracket, we may equally state the fact as:

(2.1) { ω

R, f} = v.f

A general theory of Marsden-Weinstein quotient then tells us:

(1) The fiber ω−1
R (0) of the moment map is invariant under the

action of the original Lie group S1. In our case we notice that

ω−1
R (0) is equal to the sphere of radius

√
R (with the origin as

the center) in Cn+1.
(2) ω−1

R (0) is (for general R) isomorphic to Cn+1/C×. (In our case,
R is enough “general” if R > 0.)
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2.2. Non-commutative case. Let us consider the non-commutative
version of the Marsden Weinstein quotient. (Here we said “the ver-
sion”. We shall use the word “version” throughout this talk. This
should sound like we think the symplectic or commutative world is
the “real” thing. But the author’s opinion is actually the opposite:
non-commutative theory is nearer to the “real” thing and the symplec-
tic theory is just a shadow of the non-commutative theory. We are
studying the real thing by its shadow. (;-)
First of all, we need to consider the non-commutative version of the

affine space Cn+1. We do this by specifying the “function algebra” on
it. The function algebra is the Weyl algebra

Weyln+1 = k[X0, . . . , Xn, X̄0, . . . , X̄n].

Here X0, . . . , Xn, X̄0, . . . , X̄n are 2n + 2 independent variables subject
to the following “canonical commutation relations(CCR)”:

[X̄i, Xj] = δij (Kronecker’s delta),

[X̄i, X̄i] = 0,

[XiXj] = 0. (i, j = 0, 1, 2, . . . , n).

Secondly, Let us consider the Gm-action on the Weyl algebra. The
action of c ∈ Gm is given as follows:

Xi 7→ cXiX̄i 7→ c−1X̄i, Ei 7→ cEi, Ēi 7→ c−1Ēi.

The infinitesimal version of the action above is given by a derivation

D : Xi 7→ Xi, X̄i 7→ −X̄i,

This is equal to the derivation ad( ω

R) = ad(
∑

iXiX̄i−R) (where R is
an arbitrary constant.). This says that the moment map is given by the
element ω

R. Why? Well look at the resemblance of the commutation
relation

[ ω

R, f ] = Df

and the Poisson bracket formula (2.1). Yes, the famous prescription of
“substitute Poisson bracket to commutators” works.
We proceed to consider a non-commutative version of “Cn+1/S1.”

This is an easy task. The function algebra of the non commutative
version is given by the invariant ring

(Weyln+1)
S1

= (Weyln+1)(0)

where (Weyln+1)(0) is the degree 0 part of the Weyl algebra when we
introduce Weyl with the grading Xi 7→ 1, X̄i 7→ −1. Finally, we
need to consider non commutative version of the sub-manifold where
the moment map is equal to zero. This is done by usual technique as
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in usual algebraic geometry: By taking the residue ring. The function
ring is given by:

☛
✡

✟
✠Aprototype = (Weyln+1)(0)/(

ω

R).

There is an explanation of this object(in Japanese) by the Author:
http://www.math.kochi-u.ac.jp/docky/bourdoki/erq3.dvi

2.3. A digest of the structure theory of Aprototype. We point out
a few things. Recall that for any R ∈ C, there exists a sheaf DR

of “twisted differential operators” on Pn
C. It is equal to the sheaf of

differential operators on the “Serre twisting sheaf” O(R) when R is an
integer. (See for example [2],[1].) When R is not an integer, there is
no such thing as O(R), but the sheaf DR still exists.
For the sake of simplicity, we shall treat here the case where R is not

an integer. Then:

(1) There is an category equivalence between the category of
Aprototype-modules and the category of DR-modules.

(2) In short, the category (DR-modules) can be interpreted as a
category of modules over a single algebra Aprototype. This phe-
nomenon is related to the “D-affineness” of Pn.

In this way we may obtain a rough idea of the representation theory
of Aprototype

2.4. Use of characteristic p. To obtain somewhat geometric infor-
mation about the algebra Aprototype, it is convenient to consider it over
the base ring k of characteristic p rather than the original idea where
k is R or C. Because when char(k) 6= 0, the algebra A is finite over its
center and thus may be analyzed by using the proj of the center.

2.5. Homogenization(Use of C). When the author has met the “D-
affineness” of Pn 20 years ago, the author had a little bit of relaxing
feeling. “We probably need no such construction as Proj. All we need
is Spec.” However, we shall use here the help of Proj to “complete” our
object Aprototype. Namely, we add an extra variable C and homogenize
the whole of the construction. Let us be more precise. We start with
the homogenized Weyl algebra

Weyl(C) = k[X0, . . . , Xn, X̄0, . . . , X̄n, C]

with the homogenized CCR

[X̄i, Xj] = Cδij , [Xi, Xj ] = 0, [X̄i, X̄j] = 0.
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(we call it “CCRC” ((CCR with C.) Just for fun.) It is a graded
algebra. The grading is given by:

deg(Xi) = 1, deg(X̄i) = 1, deg(C) = 2.

Incidentally, note that this is the second grading we consider. The
first one, which we denote by sdeg, was the following grading given by
Gm-action:

sdeg(Xi) = 1, sdeg(X̄i) = −1, sdeg(C) = 0.

To distinguish between the two grading, we call sdeg the signed degree.
In this language, the first step to take Marsden-Weinstein quotient is
to consider the subalgebra of whole elements of signed degree 0. That
is,

(Weyl(C))(0) = {f ∈ Weyl(C); sdeg(f) = 0}.
The homogeneous moment map (or, we should rather call, “the moment
element”) is:

ω(C)
R =

∑

i

XiX̄i − RC

where R is a “square radius”, an element of k.

We end up with the homogenized version A
(C)
prototype of Aprototype:

A
(C)
prototype = (WC(C))(0)/(

ω
R).

When the characteristic of k is non-zero, the algebra is finite over its
central subalgebra (say, Z), and the Proj(Z) is isomorphic to Pn × Pn.

3. What is Deligne-Illusie theory.

There are a lot of good explanations on this topic. The original
paper [3] is really good. There are also many good account for the
theory on the net. For example, the author found the following article
very interesting:
http://math.bu.edu/people/potthars/writings/HdRSS.pdf

So the author would like this part very short and suggest reading
such articles instead of reading this section.
Now, (if you are still reading this part,) let us begin by considering

the De Rham complex of an affine space An:

(Ω•, d) = (k[t1, . . . , tn, dt1, . . . , dtn], d).

When the characteristic p of the field k is non-zero, it has the following
sub-complex

Ω•
sparse = (k[tp1, . . . , t

p
n, t

p−1
1 dt1, . . . , t

p−1
n dtn], 0).
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We call the elements of the complex Ω•
sparse sparse because elements

of the complex have very few terms.
The first important fact to note is:

Theorem 3.1. The inclusion

(Ωsparse, 0) → (Ω, d)

is a quasi isomorphism of the complexes of sheaves on An. In other

words, we have an isomorphism in cohomology

H i(Ω•, d) ∼= H i(Ω•
sparse

).

We then consider the De Rham complex of a general non-singular
variety X by patching such local isomorphisms. We would obtain an
isomorphism

H iRΓ(Ω•, d) ∼= H iRΓ(Ω•
sparse).

The left hand side is equal to the De Rham cohomology H i
DR(X). The

right hand side, which is a cohomology of complex with 0 as the deriva-
tive, is equal to the direct sum ofH i(Ω•). We thus have an isomorphism

H i
DR(X) ∼=

⊕

j+k=i

Hj(Ωi)

which is the Hodge decomposition of De Rham complex. This provides
a very nice account of the Hodge decomposition. The explanation here,
however, is an oversimplification. An important point we should have
actually needed to take care is that the definition of Ω•

sparse depends of
the choice of the local coordinate system. So to make things work, we
should have actually worked in derived category level. We should have
needed to patch objects which look like the complexes Ω• and Ω•

sparse

as above in a derived category.
When we deal with the projective space, however, we may by-pass

such patch problem by using the linear coordinates: It is possible to
define Ωsparse globally on projective spaces.

4. Here comes the Dolbeault complex

Our objective is to define non commutative version of the Dolbeault
complex and develop its theory analogous to the Deligne-Illusie theory.
To this end, we use super theory (here we mean “super” as in super
algebra, super Lie algebra...etc.) to define non commutative version of
differential forms.
The starting point should be fairly reasonable: We consider Weyl

algebra Weyln+1 for the affine space An+1 and consider 2(n + 1) in-
dependent “1-forms” E0, . . . , En, Ē0, . . . , Ēn. The anti commutation
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relation of these “1-forms” may be a little different from what you
probably imagine: Although ordinary forms anti-commute, we intro-
duce canonical anti-commutation relation (CAR) on them:

[Ēj , Ei]+ = kδ, [Ej , Ei]+ = 0, [Ēj , Ēi]+ = 0,

(In the “in-homogeneous description”, i.e. without C.)
Here comes an extra variable k. Knowing that we can always go back

to the “ordinary theory” by taking k to be 0, Let us begin by allowing
the existence of k.
Later, we will find out that our k is very important. It corresponds

to the “Fubini-Study Kähler form”, or curvature. (which are essentially
the same because Pn is Kähler-Einstein.)
OK. you probably know now what we will talk. In the next section

we begin with the Weyl Clifford algebra, The algebra generated by
X, X̄, E, Ē’s.
There is one thing we need to be careful. We have already introduced

two kinds of grading, namely, the gradings determined by signed degree
and degree. We need to introduce the third grading, the one defined by
the form degree. Sorry for the inconvenience, but you probably know
now why they are needed.

Part 2. Definitions.

5. Weyl-Clifford algebras

5.1. Weyl algebras. Let k be a commutative field. The Weyl algebra
is the following algebra.

Weyl
(h,C)
n+1 = k[h, C,X0, X1, . . . , Xn, X̄0, X̄1, . . . , X̄n]

where Xi, X̄j are subject to the following canonical commutation rela-
tions (CCR):

[X̄i, Xj] = hCδij (Kronecker’s delta),

[X̄i, X̄i] = 0,

[XiXj] = 0. (i, j = 0, 1, 2, . . . , n).

C, h are both central.
C is a variable to homogenize the whole story. h is a “small constant”

such that the limit ‘h → 0’ gives the commutative counter part of the
theory.
We note that the following identity holds. It will be needed in later

arguments.

(XiX̄i)
p − (hC)p−1XiX̄i = Xp

i X̄
p
i (i = 0, 1, 2, . . . , n).
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5.2. CAR(Clifford algebra). We define the Clifford algebra as fol-
lows.

Cliff
(h,C,k)
n+1 = k[h, C, k, E0, . . . , En, Ē0, . . . , Ēn]

where the generators satisfy the following canonical anti-commutation
relations(CAR):

[Ēi, Ej ]+ = Chkδij

[Ēi, Ēj ]+ = 0

[Ei, Ej ]+ = 0

Note that
(EiĒi)

2 = khCEiĒi

holds so that we have

(EiĒi)
p = (khC)p−1EiĒi.

5.3. Weyl-Clifford algebra. We define the Weyl-Clifford algebra as
follows.

WC
(h,C,k)
n+1 = Weyl

(h,C)
n+1 ⊗

k[h,C]Cliff
(h,C,k)
n+1

5.4. the degree and the signed degree. As explained in Part 1, we
introduce the degree and the signed degree on WC. They are deter-
mined as follows:

deg(Xi) = 1, deg(X̄i) = 1, deg(Ei) = 1, deg(Ēi) = 1, deg(C) = 2.

sdeg(Xi) = 1, sdeg(X̄i) = −1, deg(Ei) = 1, sdeg(Ēi) = −1, sdeg(C) = 0.

5.5. GL-action. TheWeyl Clifford algebra admits a GL-action. Namely,
for any element (gij) ∈ GLn+1(k), we have















































Xi 7→
∑

j

gijXj

X̄k 7→
∑

l

ğklXl

Ei 7→
∑

j

gijEj

Ēk 7→
∑

l

ğklEl

where (ğkl) is the transpose of the inverse of (gij):
∑

j

gij ğkj = δik.
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6. super commutator and super adjoint

6.1. Form degree and the super algebra structure of WC. We
define the form degree of elements of WC by

fdeg(Xi) = 0, fdeg(X̄i) = 0, fdeg(Ei) = 1, fdeg(Ēi) = −1,

fdeg(k) = 2, fdeg(h) = 0, fdeg(C) = 0.

We employ the super algebra structure of the Weyl Clifford algebra WC
defined in the preceding section by using fdeg as the super grading.

6.2. commutators and adjoints in super algebras. Let A be a
super algebra. For any homogeneous elements f, g of the algebra A,
we define their super commutator [f, g] as

[f, g]
def
= fg − (−1)f̂ ĝgf

where f̂ , ĝ are their super degree. We extend the super commutator
linearly and define it for any pair of the algebra A.
For any element a of A, we define the super adjoint ad(a) as

ad(a) : A ∋ x 7→ [a, x] ∈ A.

7. Some important elements and operators.

7.1. GL-invariant elements ε, ε̄. The algebra WC has specific GL-
invariant elements1

ε =
∑

i

X̄iEi, ε̄ =
∑

i

XiĒi

7.2. ∂, ∂̄ as the GL-invariant derivations.

hC∂ = ad ε, hC∂̄ = − ad ε̄.

∂ :



















Xi 7→ Ei

X̄i 7→ 0

Ei 7→ 0

Ēi 7→ kX̄i.

∂̄ :



















Xi 7→ 0

X̄i 7→ Ēi

Ei 7→ −kXi

Ēi 7→ 0.

1In this writing, the author frequently use ε′ instead of ε̄. It was author’s old
notation. Since there are too many ε′ ’s going around, the author desided not to
fix them and simply remind here that ε′ = ε̄. Sorry for that. (2016/8/25 16:27:07
JST)
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8. The element m

Let us put m = RC − ∑

XiX̄i. It plays an important role in our
calculation.

8.1. m[l], the falling factorial power of m. For any non-negative
integer l, we denote by m[l] the following “generalized factorial power
of m”:

m[l] = m(m− Ch)(m− 2Ch) . . . (m− (l − 1)Ch).

8.2. formula of m. In this section, we do some calculations on m
needed for our later use. The result is summarized in the following
lemma.

Lemma 8.1. We have:

(1) ∂̄m = −ε′.
(2) [m, ε′] = −Chε′.
(3) mε′ = ε′(m− Ch).
(4) ∂̄(m[l]) = −lm[l−1]ε′ (l = 0, 1, 2, 3, . . . ).

Proof. (1) Knowing that m = 1
k

∑

EiE
′
i, we have

∂̄m =
1

k

∑

i

(−kXiE
′
i)

=−
∑

i

XiE
′
i

=− ε′.

�

(2):

[m, ε′] =
1

k
([
∑

i

EiĒi, ε
′]

=− 1

k

∑

i

[Ei, ε
′]Ēi

=− 1

k

∑

i

ChkXiĒi

=− Chε′

(3) is a trivial consequence of (2).
(4): Induction in l. The case l = 0 is trivial. The case l = 1 is treated
in (1).
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∂̄m[l] =∂̄(m[l−1](m− (l − 1)Ch))

=∂̄(m[l−1]) · (m− (l − 1)Ch) +m[l−1]∂̄m (Leibniz rule)

=− (l − 1)m[l−2]ε′ · (m− (l − 1)Ch)−m[l−1]ε′ (Induction hypothesis).

=− (l − 1)m[l−2] · (m− (l − 2)Ch)ε′ −m[l−1]ε′ (Consequence of (3)).

=− (l − 1)m[l−1]ε′ −m[l−1]ε′ (by definition of m[•])

=− lm[l−1]ε′

For a constant R ∈ k we put

µR = k
∑

i

XiX̄i +
∑

i

EiĒi − kRC.

The we define

Apre = (WC)0/(µR).

This essentially is the non-commutative analogue of the Marsden We-
instein quotient.
We need to get rid of the torsions.

A = Apre/(k-torsions)

8.3. get rid of k-torsions.

Lemma 8.2. Let a0, a1, . . . , an be mutually commuting elements of a

ring R. Assume there exists a central element c ∈ R such that a2i = cai
holds for each i = 0, 1, 2, . . . , n. Then the sum s =

∑n
i=0 ai satisfies the

following equation:

s(s− c)(s− 2c) . . . (s− (n+ 1)c) = 0

Proof. We may assume that c is transcendent over Q and that R =
K[a0, a1, . . . , an] with K = Q(c). (Otherwise we may use a specializa-
tion argument.) In that case, we have

Spec(R) =
∏

i

SpecK[ai] ∼= {0, c}n+1.

The lemma now is an easy calculation of functions on the finite set
{0, c}n+1. �

Corollary 8.3. Let us consider the ring Apre and let us put m = RC−
∑

XiX̄i. Then,

kn+2m[n+2] = kn+2m(m− Ch) . . . (m− (n+ 1)Ch) = 0.
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Proof.

(EiĒi)
2 = Ckh(EiĒi).

�

Corollary 8.4. Let us put m = RC − ∑

XiX̄i. Then the equation

m[n+2] = 0 holds in A.

In short, we admit the expression like

m =
1

k

∑

EiĒi.

In what follows, we will see that this is the only thing to note when we
pass from Apre to A.

Lemma 8.5. Let n be a positive integer. Let l be a non negative integer.

We assume that we are given idempotent elements p0, p1, . . . , pn which

are mutually commutative. We put S =
∑n

j=0 pj. Then we have:

(**) S(S − 1)(S − 2) . . . (S − (l − 1)) = l!
∑

i1<i2<···<il

pi1pi2 . . . pil .

In particular, if l! is invertible in k, then we have

1

l!
S(S − 1)(S − 2) . . . (S − (l − 1)) =

∑

i1<i2<···<il

pi1pi2 . . . pil.(*)

Proof. Let us first prove (*) when the characteristic of the field k is 0.
We regard the both sides of the equation (*) as functions on 2{0,1,...,n}.
In other words, we regard them as (complex-valued) measure over X =
{0, 1, 2, . . . , n}. Each pi is then the delta measure concentrated at i.
Now for each subset A of X , the value (measure) of the right hand

side at A is the number of subsets {i1, i2, . . . , il} of order l in A. It is
equal to the combination of l objects from A, that is,

(

#A

l

)

=
#A(#A− 1)(#A− 2) . . . (#A− l − 1)

l!
.

This is equal to the value of the left hand side of (*) at A.
Let us note that the equation (**) is true when we consider it over

the base ring Z. Then by a specialization argument, we see that the
equation (**) is valid for any ring. �

9. supplement

We have shown that m[n+2] is a k-torsion in Apre so that it is equal
to zero in A. As a supplement, in this section we show that m[n+2] is
not zero in Apre. This section is not essential for the understanding of
the present paper and may be skipped.
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Let us consider a k-algebra homomorphism ϕ fromWCn+1 toWeyl
(0,C)
n+1

which sends each of the elements k, E, Ē, h to 0. Then we see that
ϕ(µR) = 0 so that ϕ (restricted to (WC)0) descends to a k-algebra

homomorphism ϕ̃ : Apre → Weyl
(0,C)
n+1 . We note that Weyl

(0,C)
n+1 is iso-

morphic to a usual (commutative) polynomial algebra in X, X̄, C vari-
ables and therefore we see that ϕ̃(m[n+1]) = (RC −∑

iXiX̄i)
n+1 6= 0

as required.

10. Asparse

. We define 2

WCsparse = k[h, C,X0, . . . , Xn,

dX0, . . . , dXn,

X̄p
0 , . . . , X̄

p
n,

X̄p−1
0 dX̄0, . . . , X̄

p−1
n dX̄n,

∑

j

X̄jdXj]

We define (WCsparse)0 to be equal to the intersection of WCsparse with
WC0.
Let us recall that we have defined our algebra Apre and A as quo-

tients of WC0. We define Apre
sparse (respectively, Asparse) as the image of

(WCsparse)0 in Apre (respectively, the image of (WCsparse)0 in A).

11. Statement of the main theorem

We now state our main theorem of this talk:

Theorem 11.1. The inclusion

(Asparse, 0) →֒ (A, ∂̄)

gives a quasi isomorphism

(Asparse, 0) →֒ (A, ∂̄)

of sheaves over Pn × Pn.

2The author forgot to drop off k. k is actually a coboundary (locally) as we will
see later. (This correction is made on Fri Aug 19 09:27:44 JST 2016.)
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12. local terms

It would be important to use local coordinates and describe the situ-
ation locally. Because that way one may understand the algebras more
clearly.
Let us consider an open set U♥ of Pn × Pn where X0 6= 0. Let us

denote by •♥ the “localization” of our objects to U♥. To be more
accurate, we consider the global sections Γ(U♥, • ) of sheafification •̃
of the object •. Let us begin by the Weyl Clifford algebra:

WC♥ = WC[X−1
0 ].

It has the 0-part:

(WC)♥0 = k[k, h, C, x0, . . . , xn, x
′
0, . . . , x

′
n, e0, . . . , en, e

′
0, . . . , e

′
n]

where we put

xi = XiX
−1
0 , x′

i = X0X̄i, ei = EiX
−1
0 , e′i = X0Ēi.

Note that we have x0 = 1 so we can drop it off.
Let us next consider the localzation A♥ of our main object A. It is

a quotient of (WC)♥0 . The main relation is given by

µR = k
∑

i

xix
′
i +

∑

eie
′
i − RkC = 0.

Since we deleted k-torsions, we may as well write:

1

k

∑

i

eie
′
i = RC −

∑

i

xix
′
i.

Let us put the left hand side of the equation asm and rewrite the above
equation as

x′
0 = RC −

n
∑

i=1

xix
′
i −m.

Then by using this equation we may eliminate the variable x′
0 and

obtain the following expression of A♥.

✤

✣

✜

✢

A♥ = k[k, h, C, x1, . . . , xn, x
′
1, . . . , x

′
n, e0, . . . , en, e

′
0, . . . , e

′
n, m].

(m =
1

k

n
∑

i=0

eie
′
i)

The generators which appear above satisfy the following CCR and
CAR:
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✖

✔

✕
[xi, xj ] = 0, [x′

i, x
′
j] = 0, [x′

i, xj ] = hCδij (i, j = 1, . . . , n)

[ei, ej]+ = 0, [e′i, e
′
j]+ = 0, [e′i, ej ]+ = Chkδij (i, j = 0, 1, . . . , n).

In other words, A♥ is an algebra obtained by adjoining an element m
to an algebra k[k, h, C, x1, . . . , xn, x

′
1, . . . , x

′
n, e0, . . . , en, e

′
0, . . . , e

′
n] which

is isomorphic to the tensor product Weylh,Cn ⊗
k[h,C]Cliff

h,C,k
n+1 of a Weyl

algebra and a Clifford algebra. We note that this isomorphism preserves
the ‘anti holomorphic’ derivation ∂̄. and that it does not preserve the
‘holomorphic’ derivation ∂.

Proposition 12.1. As an algebra, A♥[ 1
k
] is isomorphic to a tensor

product of a Weyl algebra and a Clifford algebra:

(12.1) A♥[
1

k
] ∼= (Weyln ⊗Cliffn+1)(k[h, C, k,

1

k
])

As an algebra with a derivation ∂̄, It is isomorphic to a “Weyl-Clifford

algebra with an extra varialbe e0.”

(12.2) (A♥[
1

k
], ∂̄) ∼= ((Cliff1, ∂̄)⊗ (WCn, ∂̄))⊗k[h,C,k] k[h, C, k,

1

k
]

where the ∂̄-operator of Cliff1 is defined as follows 3:

∂̄e0 = −k, ∂̄e′i = 0

�

Corollary 12.2. Every element of A♥ can be written as
∑

cI,I′J,l,I′,J ′xIeJm[l](x′)I
′

(e′)J
′

.

The above corollary suggests that the ring A♥ is, as an k[h, k, C]-
module, “independent of h”. That means, it is of the form k[h, C, h]⊗

k[h,C]

M for some k[h, C]-module M .
It follows that

Proposition 12.3. A♥ is flat over k[h, C, k].

Part 3. Proof of the main result.

In this part we are going to prove Theorem 11.1. The proof is a little
bit technical and is probably hard to read. (Sorry.) The author hopes
that someday the situation will be improved; by an invention of the
new good way to describe the whole story.

3memo: There was a mistake here when the author wrote the “official ver-
sion”(Kinosaki report). (The author stated that the ∂̄-operator of Cliff1 was 0 but
it was actually not, and the author knew it. Sorry for that.)
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12.1. derivation D0. Let us define an even derivation D0 on WC.

D0 =
1

khC
ad(E0Ē0)

D0 descends to an even derivation on A.

e0 7→ e0, e′0 7→ −e′0, ei 7→ 0 (∀i > 0), e′i 7→ 0 (∀i > 0).

13. Refining cocycles

13.1. Representatives of cocycles. For a given cocycle f of the co-
homology group H(A), we are going to search its good representative.
We are going to do it locally. So we restrict ourselves in the affine open
set U♥ as in the previous section and employ the algebra A♥. We first
note that the element k is locally a coboundary:

∂̄(−e0) = k.

So the cohomology group H(A♥) actually consists of k-torsions. (This
is ironical. We have purged k-torsions from A, and its cohomology
elements are all k-torsions.) So some kind of “‘Koszul-complex-type
argument” is possible. Indeed, let us consider the following exact se-
quence:

(13.1) 0 → A♥ ×k→ A♥ → A♥/kA♥ → 0

k = −∂̄e0 is a coboundary in (A♥, ∂̄) , so that the multiplication
“×k” on the cohomology group H(A♥, ∂̄) is equal to 0. The connecting
map of the cohomology exact sequence associated to 13.1 thus gives a
surjection (of cohomological order 1):

H(A♥/kA♥) → H(A♥).

Let us now observe the surjection above in the cochain level and
obtain a little more information. The following Proposition is a starting
point of our whole plan.

Proposition 13.1. We have:

(1)

Ker(∂̄ : A♥ → A♥) =

{

1

k
∂̄(e0a)

∣

∣

∣

∣

a ∈ A♥; ∂̄(e0a) ∈ kA

}

(2) If an element a is equal to a coboundary in A♥/kA♥, then
1
k
∂̄(e0a) is a ∂̄-coboundary in (A♥, ∂̄).

(3) The ∂̄-cohomology class of 1
k
∂̄(e0a) depends only on the residue

class (a mod kA♥) of a in A♥/kA♥.
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Proof. (1):
⊃: obvious.
⊂: Take b ∈ Ker(∂̄;A♥ → A♥). Since we have ∂̄(−e0b) = kb, by

setting a = −b, we obtain the relation 1
k
∂̄(e0a) = b as required.

(2): Let us assume a = ∂̄b+ kc for some b, c ∈ A♥. Then we have

1

k
∂̄(e0a) =

1

k
∂̄(e0(∂̄b+ kc)) = ∂̄b+ ∂̄(e0c) = ∂̄(b+ e0c)

(3):obviously follows from (2).
�

13.2. Refining cocycles. We prove:

Proposition 13.2. Assume that the characteristic p of k is larger than

n. Then the ∂̄-cocycle is of the form 1
k
∂̄(e0a) where a is an element of

k[C, h, x1, . . . , xn, dx1, . . . , dxn, (x
′
1)

p, . . . , (x′
n)

p,

(x′
1)

p−1e′1, . . . , (x
′
n)

p−1e′n, ε]

Proof. In the preceding subsection, we have proved Proposition 13.1
which says that the ∂̄-cocycle is of the form 1

k
∂̄(e0a) where e0a is a

∂̄-cocycle in A/kA. We look at the cocycle condition for e0a and refine
the choice of a for five times.
Refinement 1. Elimination of e0.
Knowing that e20 = 0, we may assume that the element a does not

contain e0. Namely, we refine a and may assume

a ∈ k[h, C, x1, . . . , xn, x
′
1, . . . , x

′
n, e1, . . . , en, e

′
0, . . . , e

′
n, {m[l]}n+1

l=0 ].

Refinement 2. Elimination of e′0.
Let us employ the following element

ε′ = e′0 +

n
∑

i=1

xie
′
i

in A♥ and eliminate e′0. In other words, we regard a as an element of

k[h, C, x1, . . . , xn, x
′
1, . . . , x

′
n, e1, . . . , en, e

′
1, . . . , e

′
n, ε

′, {m[l]}n+1
l=0 ].

Seeing that (ε′)2 = 0, the element a is at most of degree 1 in ε′ variable.
(We do not actually re-choose a, but) this is the second step of our
refinement.
Refinement 3. Elimination of ε′. 4

4The elimination of this part may be handled easier if we use a ‘partial
integration’

ǫ′b = (∂̄m)b = ∂̄(mb)−m(∂̄b).

This footnote is useless. We need this part. Sorry.
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Let us now take a look at the following identity: for any b ∈ A, we
have

m[l]ε′b = ∂̄

( −1

l + 1
m[l+1]

)

· b ≡ −1

l + 1
m[l+1]∂̄b (modulo coboundary.)

(Note that we assumed p > n so that l + 1 is invertible in k.) Using
this identity, we may eliminate, up to coboundary, the terms related to
ε′ and assume

a ∈ k[h, C, x1, . . . , xn, x
′
1, . . . , x

′
n, e1, . . . , en, e

′
1, . . . , e

′
n, {m[l]}n+1

l=0 ].

This is the third refinement.
Refinement 4. Elimination of m[l].
As the result of the preceding three refinement, in view of the com-

mutation relations in section 8.2, we may express a in the form

a =

t
∑

l=0

m[l]fl (f0, . . . , ft ∈ k[
h,C,x1,...,xn,x′

1,...,x
′

n,
e1,...,en,e′1,...,e

′

n

]).

Among such expressions, we choose the one such that the degree t in

the m-variable is the smallest. Let us examine the cocycle condition
for e0a mod kA:

∂̄(e0a) =

t
∑

l=0

le0m
[l−1]ε′fl +

t
∑

l=0

e0m
[l]∂̄(fl) (modulo k.)

We pay attention to the coefficients of e0e
′
0 in this equation. In other

words, we decompose right hand side of the equation to a sum of eigen
vectors of the derivation D0 (See subsection 12.1). We then see

t
∑

l=0

le0m
[l−1]fl = 0.

Or, equivalently,

e0m
[t−1]ft = −

t−1
∑

l=0

l

t
e0m

[l−1]fl.

This tells us that e0m
[t]ft may be expressed as a sum of terms of

degree lower than t in the m-variable. (Note again that our t here is
invertible in k by our assumption p > n.) As a consequence, by the
choice of t, we see that t = 0. That means, we may assume (using such
choice)

a ∈ k[h, C, x1, . . . , xn, x
′
1, . . . , x

′
n, e1, . . . , en, e

′
1, . . . , e

′
n].

This is the fourth refinement.
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We may simplify the cocycle further by using

dxi = ∂xi = ei − xie0, ∂̄x′
i = e′i (i = 1, 2 . . . , n).

These elements are ∂̄-closed:

∂̄(dxi) = 0, ∂̄(∂̄x′
i) = 0 (i = 1, 2, . . . n).

Since e20 = 0, and since we are considering an element of the type
1
k
∂̄(e0a), we do not have to care too much about the e0 that appear in

the expression of dxi and we may assume:

a ∈ k[h, C, dx1, . . . , dxn, ∂̄x
′
1, . . . , ∂̄x

′
n, x1, . . . , xn, x

′
1, . . . , x

′
n]

We would like to solve the cocycle equation ∂̄(e0a) = 0 in A♥/kA♥. We
have now come to the point where usual theory of De Rham complex is
applicable. If we avoid changing the order of x, dx’s and x′, ∂̄x′’s, (that
means, if we employ such “normal ordering” here), the above module
with the ∂̄ as the derivation behaves much like the De Rham(Dolbeault)
complex. There remains one difference though, that we have an extra
equation:

0 = e0

n
∑

i=0

eie
′
i = e0

n
∑

i=1

dxi∂̄x
′
i.

Knowing that ∂̄ε ≡ ∑n
i=0 eie

′
i modulo kA♥, we may now solve the

cocycle equation.
We argue locally and we may assume x′

1 6= 0. Then we may divide
a by ǫ. We obtain:

a = αε+ β

where α, β are elements which does not contain e1.

∂̄(e0a) = ∂̄(α)ε+ ∂̄(β) mod k.

This condition is equivalent to the conditions ∂̄α = 0 and ∂̄β = 0. By
using the Deligne Illusie theory, we may write α, β as sums of ∂̄-closed
objects and sparse elements.
Lastly we need to eliminate k, by using the fact that k is locally a

coboundary:
∂̄e0 = −k

�

Part 4. Projective varieties

14. Varieties

Let k be a field with an auto-morphism •̄ : k ∋ x → x̄ ∈ k of
order 2. One such is of course the field of complex numbers C (with
complex conjugation), We certainly expect our theory to expect Kähler
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geometry of complex varieties. But we are going to do so, using the
theory of ultrafilters, by studying objects over a field of characteristic
p 6= 0.
So let us assume here (as we have done in the preceding sections)

that the characteristic p of the field k is positive. Our typical example
should be the field Fp2 (with Frobenius map.)
Let V be a usual (i.e. (“not non-commutative”) projective variety

over the field k. By definition V is a sub-variety of the projective space
Pn(k) for some integer n. We assume p is sufficiently larger than n.
Let I = (F1, . . . , Fs) be the homogeneous defining ideal of V . Then
starting with “the homogeneous non commutative Dolbeault complex”

WCV = WCn+1/(f
p
1 , . . . , f

p
s , F̄

p
1 , . . . , F̄

p
s ),

We define the Dolbeault complex (WCV )(0)/(µR) in the same way as
we have done for projective space. Then we may easily verify that AV

defines a sheaf of algebras AV over V × V̄ .
The sheaf of algebras AV may differ from the one you would imagine.

For example, even when we consider h = 0, AV is Larger than the
ordinary Dolbeault complex of V . F1/F2 is nilpotent, not zero in AV .
There are also other non zero nilpotents. But the point is that AV is a
matrix bundle over the usual original Dolbeault complex and is likely
to be “Morita equivalent” to the usual original Dolbeault complex. We
are expecting that AV has properties similar to the ordinary Dolbeault
complex of V .
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