
TOPICS IN NON COMMUTATIVE ALGEBRAIC
GEOMETRY AND CONGRUENT ZETA FUNCTIONS

(PART I).

YOSHIFUMI TSUCHIMOTO

1. Introduction

This is a note of lectures held at Kochi University from 2006.04.26.

2. Plan

...and I will show you how deep the rabbit hole goes.
Morpheus, 1999

The author is going to talk what he knows about non commutative
algebraic geometry. The plan is summarized as the following diagram.

path integral NAS n-category

Abelian category

ultra filter

finite 
field

process

non commutative algebraic geometry

3. Notations and conventions

We include 0 as a “natural number”.

N = {0, 1, 2, . . . , }.

#S = number of elements in S
1
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All the rings and algebras (and homomorphism among them) here
are assumed to be unital and associative unless otherwise stated.

4. Guiding problems

The following two conjectures are highly related to each other and
appear frequently in our theory.

• The Jacobian conjecture.
• The Dixmier conjecture.

The following hypothesis is likely to be related.

• The Riemann hypothesis.

5. Finite fields

In this section we summarize some results on field theory, especially
on finite fields. We omit the proofs. See for example [4] ([5] if the
reader prefers a Japanese book).

All the rings and fields in this section is assumed to be commutative.
The following lemma is well-known.

Lemma 5.1. For any prime number p, Z/pZ is a field. (We denote
it by Fp.)

Funny things about this field are:

Lemma 5.2. Let p be a prime number. Let R be a commutative ring
which contains Fp as a subring. Then:

(1)
1 + 1 + · · · + 1
︸ ︷︷ ︸

p-times

= 0

holds in R.
(2) For any x, y ∈ R, we have

(x + y)p = xp + yp

We would like to show existence of “finite fields”. A first thing to do
is to know their basic properties.

Lemma 5.3. Let F be a finite field (that means, a field which has
only a finite number of elements.) Then:

(1) There exists a prime number p such that p = 0 holds in F .
(2) F contains Fp as a subfield.
(3) q = #(F ) is a power of p.
(4) For any x ∈ F , we have xq − x = 0.
(5) The multiplicative group F× is a cyclic group of order q − 1.
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Proof. (4): Use Euler-Lagrange theorem for F×.
(5): we prove the following Lemma which gives more general result. �

Lemma 5.4. Let K be a field. Let G be a finite subgroup of K×(=multiplicative
group of K). Then G is cyclic.

Proof. We first prove the lemma when |G| = `k for some prime
number `. In such a case Euler-Lagrange theorem implies that any
element g of G has an order `s for some s ∈ N, s ≤ k. Let g0 ∈ G be an
element which has the largest order m. Then we see that any element
of G satisfies the equation

xm = 1.

Since K is a field, there is at most m solutions to the equation. Thus
|G| ≤ m. So we conclude that the order m of g0 is equal to |G| and
that G is generated by g0.

Let us proceed now to the general case. Let us factorize the order.

|G| = `k1
1 `k2

2 . . . `kt
t (`1, `2, . . . , `t : prime number,k1, k2, . . . , kt ∈ Z>0).

Then G may be decomposed into product of p-subgroups

G = G1 × G2 × · · · × Gt (|Gj| = `
kj

j (j = 1, 2, 3, . . . , t)).

By using the first step of this proof we see that each Gj is cyclic. Thus
we conclude that G is also a cyclic group. �

The next task is to construct such field. An important tool is the
following

Lemma 5.5. For any field K and for any non zero polynomial f ∈
K[X], there exists a field L containing L such that f is decomposed
into polynomials of degree 1.

To prove it we use the following lemma.

Lemma 5.6. For any field K and for any irreducible polynomial f ∈
K[X] of degree d > 0, we have the following.

(1) L = K[X]/(f(X)) is a field.
(2) Let a be the class of X in L. Then a satisfies f(a) = 0.

Lemma 5.7. Let p be a prime number. Let q = pr be a power of p.
Let L be a field extension of Fp such that Xq − X is decomposed into
polynomials of degree 1 in L. Then:

(1)
L1 = {x ∈ L; xq = x}

is a subfield of L containing Fp.
(2) L1 has exactly q elements.



4 YOSHIFUMI TSUCHIMOTO

Lemma 5.8. Let p be a prime number. Let r be a positive integer.
Let q = pr. Then:

(1) There exists a field which has exactly q elements.
(2) There exists an irreducible polynomial f of degree r over Fp.
(3) Xq − X is divisible by f .
(4) For any field K which has exactly q-elements, there exists an

element a ∈ K such that f(a) = 0.

Theorem 5.9. For any power q of p, there exists a field which has
exactly q elements. It is unique up to an isomorphism. (We denote it
by Fq.)

The relation between various Fq’s is described in the following lemma.

Lemma 5.10. There exists a homomorphism from Fq to Fq′ if and
only if q′ is a power of q.

Note: The argument given in previous versions of this note was not
good enough – inductive limits were taken for non-cofinal arrows. So
we modified it to a corrected version(2006/11/29).

Suppose we are given a power q of a prime number p.
For each positive integer n, we put

Kn = Fqn! (a field with qn! elements)

which is unique up to an isomorphism. Then let us choose for each n
a field homomorphism

φn : Kn ↪→ Kn+1.

Then we take an inductive limit to define

Fq = lim−→
n

(Kn)

It is easy to check that the following theorem holds.

Theorem 5.11. Fq is the algebraic closure of Fq.

Thus, a fortiori the isomorphism class of the field Fq does not depend
of the choice of {Kn} or {φn}.
5.1. Definition of congruent Zeta function. In this section we de-
fine the congruent Zeta function Z(V/Fq, T ). To avoid assuming too
much knowledge on algebraic geometry, we only define it for ”affine
schemes of finite type” (although we do not use that terminology) for
now. For a considerably good account of the theory of the congruent
Zeta functions, see [3]. We also recommend [1] which also has a brief
explanation on the topic.
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Definition 5.12. Let V = {f1, f2, . . . , fm} be a set of polynomial
equations in n-variables over Fq. We denote by V (Fqs) the set of solu-
tions of V in (Fqs)n. That means,

V (Fqs) = {x ∈ (Fqs)n; f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0}.
Then we define

Z(V/Fq, T ) = exp(
∞∑

s=1

(
1

s
#V (Fqs)T s)).

6. Uncertainty principle

6.1. A crush course in quantum physics. Let us oversimplify the
story and summarize the (earliest stage of) quantum physics in the
following way. (For precise and physically more correct arguments, see
for example [2])

(1) A system is described by a Hilbert space H.
(2) Each physical quantity A corresponds to an operator OA on H.
(3) A state corresponds to a vector v ∈ H of length 1.
(4) The expectation value Ev(A) of A when the system is in the

state v is given by

Ev(A) = 〈v, OAv〉 (inner product)

(Note for mathematicians: when we use “inner products” in this Lec-
ture, we usually mean a biadditive forms which are linear in the second
variable and conjugate-linear in the first variable. That means,

〈c1f, c2g〉 = c1c2〈f, g〉 (c1, c2 ∈ C).

Please pay attention.)
One important example is a position (q1, q2, q3, . . . , qn) and a mo-

mentum (p1, p2, p3, . . . , qn) of a particle P .

H = L2(Rn), Oqj
= xj, Opj

= i∂/∂xj (j = 1, 2, 3, . . . , n)

(Note for physicists: we employ a ”system of units” such that the
Planck’s constant (divided by 2π) ~ is equal to 1.)

Then the expectation of a function f(x) ∈ C(Rn) (say) when the
state corresponds to a L2 function φ ∈ H is given by

Eφ(f) =

∫

φ(x)f(x)φ(x)dx =

∫

f(x)|φ(x)|2dx.

One may then regard |φ(x)|2 as a “probability density” of the particle
P on Rn. φ(x) is called the wave function of the particle. We should
note:
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(1) φ(x) is complex valued. (It is not always positive nor real.)
(2) the square of the absolute value of φ(x) (rather than φ(x) it-

self) is the probability.

In this sense, we sometimes use the term “probability amplitude”. The
square of the absolute value of the probability amplitude is the proba-
bility.

On the other hand, the expectation of a function g(i∂/∂x) ∈ C(Rn)
should be:

Eφ(g) =

∫

φ(x)g(i∂/∂x)φ(x)dx.

The computation becomes easier when we take a Fourier transform
F of g.

F[g](ξ) = (2π)−n/2

∫

f(x)eixξdx

or its inverse

F̄[g](ξ) = (2π)−n/2

∫

f(x)e−ixξdx(= F[g](−ξ)).

The Fourier transform is known to preserve the L2-inner product.
That means,

〈F[g1], F[g2]〉 = 〈g1, g2〉
One of the most useful properties of the Fourier transform is that it

transforms derivations into multiplication by coordinates. That means,

F[(∂/∂xj)g] = iξjF[g].

Using the Fourier transform we compute as follows.

Eφ(g) =

∫

F[φ]g(−ξ)F[φ]dx. =

∫

(φ)g(−ξ)|F[φ]|2dx. =

∫

g(ξ)|F̄(φ)|2dx.

We then realize that |F̄[φ]|2 plays the role of the probability density
in this case.

Thus we come to conclude:
The probability amplitude of the momentum is the Fourier transform

of the probability amplitude of the position.
The Fourier transform, then, is a way to know the behavior of quan-

tum phenomena.

�

�

�

�

One may regard a table of Fourier transform (which ap-
pears for example in a text book of mathematics) as a
vivid example of position and momentum amplitudes of
a particle.
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To illustrate the idea, let us know concentrate on the case where
n = 1 and assume that φ is a square root of the normal(=Gaussian)
distribution N(m, σ) of mean value m and standard deviation σ.

φ(x) =
√

N(m, σ) =

√

1√
2πσ

e−
(x−m)2

2·2σ2 .

By using a formula

F[e−x2/a] =

√
a

2
e−aξ2/4,

we see that the Fourier transform of φ is given by

F[φ] =

√

1√
2πσ−1/

√
2
eiξme

−
ξ2

2(σ−1/
√

2)2 = eiξm

√

N(0,
1√
2σ

),

so that the inverse Fourier transform is given as follows.

F̄[φ] = e−iξm

√

N(0,
1√
2σ

).

We observe that both |φ|2 and |F̄[φ]|2 are normal distribution, and
that the standard deviation of them are inverse proportional to each
other.

In easier terms, the narrower the |φ|2 distributes, the wider the trans-
form ||̄F|[φ]|2 does.

It is a primitive form of the fact known as “the uncertainty principle”.

6.2. Eigen vectors. Suppose we created a physical state φ (in the
Laboratory, say) so that “each time we observe the physical quality A,
we always obtain the same value λ. In such a case, we have

Eφ(p(A)) = p(Eφ(A)) = p(λ)

for any polynomial p. In other words, Eφ gives an representation of an
algebra generated by A.

Let us now assume that OA is a Hermitian operator. We put m =
Eφ(A). The variance of A is given by

Eφ(A
2) − Eφ(A)2 = Eφ((A − m)2) = ||(OA − m)φ||2.

When A always takes the same value, then as we have explained above,
the variance should be zero. In that case, we have

OAφ = mφ.

This means that φ is an eigen vector of OA which belongs to an eigen
value m.
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Thus we come to a situation where term “spectrum” is used. Terms
like “spectrum of an operator”, “spectrum of a commutative ring” are
thus related. We may study in several directions. Namely, theory in C∗-
algebras, commutative algebras, operator theory, algebraic geometry,
etc.

But we choose to continue a primitive approach where minimal knowl-
edge is needed.

6.3. Representations. In abstract algebra, we may find another way
of describing the uncertainty principle. We first define the algebra
generated by the operators appeared in the preceding subsection.

An(k) = k〈x1, x2, . . . , xn, ∂1, ∂2, . . . , ∂n〉
We call it the Weyl algebra over k. Here, k is the field C of complex
numbers in the physics context, but may well be a domain of charac-
teristic 0.

In general, including the case where the characteristic of the ground
field k is non zero (or even the case where k is an arbitrary ring), we
define as follows.

Definition 6.1. Let n be a positive integer. A Weyl algebra An(k)
over a commutative ring k is an algebra over k generated by 2n elements
{γ1, γ2, . . . , γ2n} with the “canonical commutation relations” (CCR)

[γiγj] = hij (1 ≤ i, j ≤ 2n).

Where h is a non-degenerate anti-Hermitian 2n × 2n matrix of the
following form.

(h) =

(
0 −1n

1n 0

)

.

In what follows, h will always mean the matrix above. we denote by
h̄ the inverse matrix of h.

Lemma 6.2. Any element a of An(k) is written uniquely as
∑

i1,i2,i3,...,i2n

ai1,i2,i3,...,i2nγi1
1 γi2

2 γi3
3 . . . γin

2n

Then the fact is:

Lemma 6.3. Assume k is a field of characteristic zero. Then the
Weyl algebra An(k) is simple (that means, has no proper two-sided
ideals). There exists no finite dimensional representation of An(k)
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Proof. Let a be a non trivial two-sided ideal of An(k). We take
a non zero element x ∈ a with the lowest degree when expressed as a
polynomial of γ.

x =
∑

I

xIγ
I

Then it is easy to see that the commutator [γi, x] has the degree lower
than x, and that one of the commutators is non zero unless x is a
constant.

From the manner we choose the element x, we deduce that x should
be a non zero constant in a. That means,

a = An(k).

This is contrary to the assumption that a is non trivial.
�

When the characteristic of the base field k is not zero, things are
different. We shall see this in the next section.

Before that, we make an easy explanation for the latter part of the
Lemma above. Let

α : An(k) → Md(k)

be a finite dimensional representation. Then taking a trace of the CCR
relations we obtain

0 = tr [α(γn+i)α(γi)] = trα([γn+iγi]) = tr(α(1)) = d

which is absurd.

7. Representations of Weyl algebras of positive

characteristics

The matrix is everywhere. It is all around us. Even in this
very room.

In this section we explain a theory described in [6] and [7].

7.1. differential operators in positive characteristics. We begin
by noting the following easy fact.

Lemma 7.1. Let k be a field of characteristic p 6= 0. Let n be a
positive integer. Then we have

(
∂

∂xi
)pf(x) = 0 (i = 1, 2, . . . , n).

for any polynomial f ∈ k[x1, x2, . . . , xn]
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In short, we have ∂p
i = 0. This explains why we defined An(k) by a

generator and relation rather than a ring of differential operators.
Of course, differential operations give important examples of repre-

sentation of the Weyl algebras.

Lemma 7.2. Let k be a field of characteristic p 6= 0. Let n be a pos-
itive integer. There is a finite dimensional representation Φ of An(k)
on k[x1, x2, . . . , xn]/(xp

1, x
p
2, . . . , x

p
n) defined as follows.

Φ(γi)f = xif, Φ(γn+i)f = ∂i · f (i = 1, 2, . . . , n)

Lemma 7.3. Let k be a field of characteristic p . We have the fol-
lowing facts.

(1) γp
j belongs to the center of An(k) for any j ∈ {1, 2, 3, . . . , 2n}.

(2) More precisely, the center Zn(k) = Z(An(k)) of the ring An(k)
is given by

Zn(k) = k[γp
1 , γ

p
2 , γ

p
3 , . . . , γ

p
2n].

(3) An(k) is a free Zn(k) -module of rank p2n .
(4) Let a0 be an ideal of An(k) defined as

a0 = (γp
1 , γ

p
2 , . . . , γ

p
2n).

Then we have

a0 =
2n∑

j=0

An(k)γp
j

(5) Any element of An(k)/a0 is written uniquely as

p−1
∑

j1,j2,j3,...,jn=0

aj1j2j3...j2nγj1
1 γj2

2 γj3
3 . . . γ

j2n−1

2n−1 γj2n
2n

for some a• ∈ k.

Lemma 7.4. Let Φ be the representation given above. The kernel of
Φ is equal to

a0 = (γp
1 , γ

p
2 , . . . , γ

p
n)

Φ gives rise to an algebra isomorphism

Φ : An(k)/a0
∼= Mpn(k).

Proof. That a0 is contained in Ker(Φ) is obvious. Thus we obtain
an well-defined algebra homomorphism Φ.

To see the injectivity of Φ, we employ a lexicographic order on multi
index sets and see that

∂IxJ =

{

0 if I > J

I! if I = J
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holds for any multi-indices I, J ⊂ {0, 1, 2, 3, . . . , p−1}n. Then by using
the previous sublemma we see that Φ is indeed injective.

The surjectivity of Φ is verified by counting dimensions.
�

7.2. irreducible representations of the Weyl algebras. By trans-
lating the irreducible representation Φ in the previous section, we ob-
tain a family of irreducible representations.

Lemma 7.5. Let k be a field of characteristic p 6= 0. Let n be a
positive integer. Let c ∈ k2n. Then there is a finite dimensional rep-
resentation Φc of An(k) on k[x1, x2, . . . , xn]/(xp

1, x
p
2, . . . , x

p
n) defined as

follows.

Φ(γi)f = (xi + ci)f, Φ(γn+i)f = (∂i + cn+i) · f (i = 1, 2, . . . , n)

Then from what we have shown in the previous section, we obtain
the following results.

Lemma 7.6. Let k, c, Φc as in Lemma above. Then:

(1) The kernel of Φc is given as

Ker(Φc) = ac = (γp
1 − cp

1, γ
p
2 − cp

2, γ
p
3 − cp

3, . . . , γ
p
2n − cp

2n).

(2) Φc gives rise to a k-algebra isomorphism

Φc : An(k)/ac
∼= Mpn(k).

(3) Φc is an irreducible representation of An(k).

7.3. Schur’s lemma.

Lemma 7.7. Let k be an algebraically closed field. Let V be a finite
dimensional representation of a k-algebra A. That means, V is a finite
dimensional vector space over k, and we have a k-algebra homomor-
phism

α : A → Endk(V ).

V may be regarded as an A-module. We assume further that V is
irreducible representation of A. That means, V admits no non trivial
A-module.

Then for each element z the center Z(A) of A, α(z) is equal to a
constant.

Proof. Let c ∈ k be an eigen value of α(z). Then α(z − c) has a
non trivial kernel. That means,

Vc = {v ∈ V ; α(z − c).v = 0}
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is a non zero vector subspace of V . It is easy to verify that Vc is a
A-submodule of V . From the irreducibility assumption, we have

V = Vc,

which in turn means that α(z) = c.
�

Corollary 7.8. Let k be an algebraically closed field of character-
istic p 6= 0. Then every finite dimensional irreducible representation
α : An(k) → Endk(V ) of An(k) is equivalent to a representation Φc for
some c ∈ k2n.

Proof. It is easy to see that γp
j is in the center Z(An(k)) of the

Weyl algebra An(k) for j = 1, 2, 3, . . . , 2n.
From the Lemma above, we have

α(γp
j ) = aj

for some aj ∈ k. Let cj be the p-th root of aj in k (which exists
uniquely). Then we see that

ac ⊂ Ker(α).

Thus α is essentially a representation of An(k)/ac
∼= Mpn(k). �

For completeness’s sake, we record here the following easy lemma.

Lemma 7.9. Let k be a field. Then any finite dimensional repre-
sentation Mn(k) is written as a direct sum of copies of the standard
representation kn.

Proof. Let us denote by eij the i, j-elementary matrix. That means,

(eij)kl =

{

1 when (i, j) = (k, l)

0 otherwise.

Let V be the representation vector space. We first note that pi =
eii form a complete system of mutually orthogonal projections. That
means,

p2
i = pi, pipj = 0 (if i 6= j),

n∑

i=1

pi = 1

Let us thus put Vi = piV . Then we have

V =
n⊕

i=1

Vn.

Furthermore,
eij. : Vj → Vi
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is an isomorphism of vector space whose inverse is equal to eji.
Let us take a linear basis {vl}d

l=1 of V1 over k. Then

{ei1vl; i = 1, 2, 3, . . . , n, l = 1, 2, 3, . . . , d}
is a basis of V . It is now easy to see that for each l, the vector space

Wl = linear span({ei1vl; i = 1, 2, 3, . . . , n})
is isomorphic to the standard representation of Mn(k).

�

We also notice the following

Corollary 7.10. Let k be a field of characteristic p 6= 0. Then
Mpn(k) is generated by {µi}2n

i=1 such that

[µiµj] = hij (∀i, j), µp
i = 0(∀i)

Proof. We take the representation Φ0 above and

µi = Φ0(γi) (i = 1, 2, 3, . . . , 2n).

�

8. “Universal representation” of Weyl algebras and

derivations

Lemma 8.1. Let k be a field of characteristic p 6= 0. Let t1, t2, . . . , t2n

be indeterminates over k. Then we have an injection

Φ : An(k) → Mpn(k[t1, t2, . . . , t2n])

such that
Φ(γi) = µi + ti.

Proof. We first note that Φ(γp
i ) = tpi holds for all i. Thus for any

element x ∈ An(k), we write

x =
∑

I

γIpI(γ
p
1 , γ

p
2 , γ

p
3 , . . . , γ

p
2n)

where sum is taken over multi-indices I ⊂ {0, 1, 2, 3, . . . , p− 1}n. Then
we obtain

Φ(x) =
∑

I

(µ + t)IpI(t
p
1, t

p
2, t

p
3, . . . , t

p
2n)

Now, let I0 be the greatest index among I such that pI 6= 0 (in lexico-
graphical order). Then we have

∂I0Φ(x) = (I0!)pI(t
p) 6= 0.

This is contrary to the assumption that Φ(x) = 0. Thus we have pI = 0
for all I. �
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The representation is “universal”. It contains all the information of
An(k) and also carries all the irreducible finite-dimensional representa-
tions as specializations.

Via this representation, any element of An(k) may be viewed as a
matrix-valued polynomial function on the affine space A2n.

8.1. What is the image of Φ? The answer is obtained by considering
derivations.

Lemma 8.2. Let k be a field of characteristic p. For each i =

1, 2, 3, . . . , 2n, let ∇(0)
i be a derivation on Mpn(k[t1, t2, t3, . . . , t2n]) de-

fined by
∂

∂ti
−

∑

j

hij ad(µj).

Then:

(1) We have

(*) ∇(0)
i (x) = 0 (i = 1, 2, 3, . . . , 2n)

for any element x ∈ Image(Φ).
(2) Conversely, any element x of Mn

p (k[t1, t2, t3, . . . , t2n]) which sat-
isfy the equations (*) belongs to the image Image(Φ).

Proof. (1) Since ∇(0)
i is a derivation, we see that the set of elements

in Mn
p (k[t1, t2, t3, . . . , t2n]) which satisfy the equations (*) above form

a k-algebra. It is also easy that ∇(0)
i (Φ(γj)) = 0 for all i, j.

(2) Any element x of Mn
p (k[t1, t2, t3, . . . , t2n]) may be written uniquely

as ∑

I

tIfI(Φ(γ))

(where sum is taken over indices I ⊂ {0, 1, 2, 3, . . . , p − 1}n) for some
polynomial fI .

∑

I

∂i(t
I)fI(Φ(γ)) = 0

We may easily deduce that this happens only when fI = 0 for all I 6= 0.
�

Definition 8.3. For any vector field v =
∑

j vj(t)∂j on A2n, We
define

∇(0)
v =

∑

j

vj∇(0)
j

Lemma 8.4. ∇(0) is a connection. That means,
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(1) ∇(0) is bi-additive

∇(0)
v1+v2

= ∇(0)
v1

+ ∇(0)
v2

, ∇(0)
v (f + g) = ∇(0)

v (f) + ∇(0)
v (g).

(2) For each v, ∇(0)
v is a first order differential operator. Namely,

we have

∇(0)
v (fm) = (v.f)m + f∇(0)

v .m (∀f ∈ k[t], ∀m ∈ Mpn(k[t])).

Proof. Easy. �

Lemma 8.5. ∇(0)
v is the only first order differential operator on Mpn(k[t])

such that its principal symbol is v and

∇(0)
v (Image(Φ)) = 0

holds.

Proof. Let D be another first order differential operator with the
same property. Then we see that the difference

P = ∇(0)
v − D

is a k[t]-linear map from Mpn(k[t]) to itself, and that P is zero when
restricted to the image Image(Φ) of Φ. Since Image(Φ) generates
Mpn(k[t]) as a k[t]-module, we see immediately that P is equal to zero.

�

We could go further and describe fully the result obtained in the
author’s papers in terms of algebras (that means, “global” things.)

But the author thinks it unnatural to do so without even mentioning
geometric interpretation.

So let us close the part I of this talk and proceed to a more sophis-
ticated world of schemes.
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