next up previous
Next: Affine schemes and rings: Up: tensor products and inverse Previous: sheaves associated to modules

direct image of a sheaf

DEFINITION 3.8   Let $ X,Y$ be topological spaces. Let $ f:X\to Y$ be a continuous map. Let $ \mathcal F$ be a sheaf on $ X$ . Then we define its direct image with respect to $ f$ by

$\displaystyle f_*(\mathcal F)(U)=\mathcal F(f^{-1}(U))
$

with obvious restriction maps.

PROPOSITION 3.9   Let $ X,Y$ be topological spaces. Let $ f:X\to Y$ be a continuous map. Let $ \mathcal F$ be a sheaf on $ X$ . Let $ \mathcal G$ be a sheaf on $ Y$ . Then we have a natural isomorphism.

$\displaystyle \operatorname{Hom}(\mathcal G,f_*\mathcal F)\cong \operatorname{Hom}(f^{-1}\mathcal G,\mathcal F)
$

PROOF.. We first define an adjoint map

$\displaystyle \iota: f^{-1} f_*\mathcal F \to \mathcal F
$

and construct the isomorphism using it.

$ \qedsymbol$

PROPOSITION 3.10   Let $ X,Y$ be (locally) ringed spaces. Let $ f:X\to Y$ be a morphism of (locally) ringed spaces. Let $ \mathcal F$ be a sheaf of $ \mathcal{O}_X$ -modules. Let $ \mathcal G$ be a sheaf on $ \mathcal{O}_Y$ -modules. Then we have a natural isomorphism of modules.

$\displaystyle \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal G,f_*\mathcal F)
\cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal G,\mathcal F)
$

PROOF..

      $\displaystyle \operatorname{Hom}_{\mathcal{O}_Y} (\mathcal G,f_*\mathcal F)\cong \operatorname{Hom}_{f^{-1}\mathcal{O}_Y}(f^{-1}\mathcal G,\mathcal F)$
      $\displaystyle \cong \operatorname{Hom}_{\mathcal{O}_X} (\mathcal{O}_X \otimes_{...
...,\mathcal F) \cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal G,\mathcal F)$

$ \qedsymbol$

EXAMPLE 3.11   Let $ A,B$ be rings. Let $ \varphi:A \to B$ be a ring homomorphism. We put $ f=\operatorname{Spec}(\varphi)$ be the continuous map $ Y=\operatorname{Spec}(B)\to \operatorname{Spec}(A)=X$ corresponding to $ \varphi$ . We note that $ B$ carries an $ A$ -module structure via $ \varphi$ . Accordingly, we have the corresponding sheaf $ \mathcal{O}_X \otimes_A B$ on $ X$ . We may easily see that this sheaf coincides with $ f_*\mathcal{O}_Y$ . The map $ \varphi:A \to B$ then may also be regarded as a homomorphism of $ A$ -modules. We have thus an $ \mathcal{O}_X$ module homomorphism

$\displaystyle \varphi_\char93 : \mathcal{O}_X \to f_*\mathcal{O}_Y
$

of sheaves on $ X$ . By the adjoint relation (Proposition 3.9), we obtain a sheaf homomorphism

$\displaystyle \operatorname{Spec}(\varphi)^\char93 : f^\char93 \mathcal{O}_X \to \mathcal{O}_Y.
$

of sheaves of rings.


next up previous
Next: Affine schemes and rings: Up: tensor products and inverse Previous: sheaves associated to modules
2007-12-11