next up previous
Next: functoriality Up: connection Previous: definition of connections on

direct sums, tensor products, homomorphisms

The first definition in the previous subsection is important because one may easily recognize that the following type of lemma should hold.

LEMMA 1.1   Let $ A$ be a commutative ring. Let $ B$ be a commutative $ A$ -algebra. Let $ M_1,M_2$ be $ B$ -modules with connections

$\displaystyle \nabla_j: M_j\to \Omega^1_{B/A} \otimes_B M_j \qquad (j=1,2).
$

Then we may define a connection on the direct sum $ M_1\otimes M_2$ , on the tensor product $ M_1\otimes_B M_2$ , and on the module $ \operatorname{Hom}_B(M_1, M_2)$ . Namely,

$\displaystyle \nabla(m_1,m_2)=(\nabla_1(m_1), \nabla_2 (m_2))
$

$\displaystyle \nabla(m_1\otimes m_2)=\nabla_1(m_1)\otimes m_2 + m_1\otimes \nabla_2 (m_2)
$

$\displaystyle \nabla(\phi)(s)=\nabla_2(\phi(s))-(\operatorname{id}_{\Omega^1}\otimes \phi)(\nabla_1(s))
$

PROOF.. Easy.

$ \qedsymbol$



2007-12-26