next up previous
Next: localization Up: Congruent zeta functions. No.5 Previous: Congruent zeta functions. No.5

Affine schemes

We define affine schemes as a representable functor.

DEFINITION 5.1   Let $ R$ be a ring. Then we denote by $ \operatorname{Spec}(R)$ the affine scheme with coordinate ring $ R$ .

For any affine scheme $ \operatorname{Spec}(R)$ and for any ring $ S$ , we define the $ S$ -valued point of $ \operatorname{Spec}(R)$ by

$\displaystyle \operatorname{Spec}(R)(S)=\operatorname{Hom}_{\operatorname{ring}}(R,S)
$

LEMMA 5.2   Let $ k$ be a ring. Let $ \{f_1,f_2,\dots,f_m\}$ be a set of equations in $ n$ -variables $ X_1,X_2,\dots,X_n$ over $ k$ . Let us put

$\displaystyle A=k[X_1,X_2,\dots,X_n]/(f_1,f_2,\dots,f_m).
$

Then we have a natural identification

$\displaystyle V(f_1,f_2,\dots,f_m)(K)
=\operatorname{Spec}(A)(K)
$

for any algebra $ K$ over $ k$ .

COROLLARY 5.3   We employ the assumption as the Lemma. Then:
  1. When the ``target algebra'' $ K$ is given, the set of solutions $ V(f_1,f_2,\dots,f_m)(K)$ depends only on the affine coordinate ring $ A$ .
  2. For any element $ P\in \operatorname{Spec}(A)(K)$ , the ``evaluation map''

    $\displaystyle A \ni f \mapsto \operatorname{eval}_P(f)\in K
$

    is defined in an obvious way. Thus every element of $ A$ may be regarded as a $ K$ -valued function on $ \operatorname{Spec}(A)(K)$ .


next up previous
Next: localization Up: Congruent zeta functions. No.5 Previous: Congruent zeta functions. No.5
2007-05-17