next up previous
Next: About this document ...

Congruent zeta functions. No.8

Yoshifumi Tsuchimoto

LEMMA 8.1   Let $ p$ be an odd prime. Let $ \zeta$ be a primitive $ 8$ -th root of unity in $ \overline{\mathbb{F}_p}$ . That means, $ \zeta$ is a root of $ X^4+1\in {\mathbb{F}}_p[X]$ . Let us put $ x=\zeta+\zeta^{-1}$ . Then:
  1. $ x^2=2$ .
  2. $ x^p-x=0$ if $ p=\pm 1 \mod 8$ .
  3. $ x^p+x=0$ if $ p=\pm 3 \mod 8$ .
  4. $ {\left(\frac{2}{p}\right)}=(-1)^{(p^2-1)/8} $ .


\fbox{projective space and projective varieties.}

DEFINITION 8.2   Let $ R$ be a ring. A polynomial $ f(X_0,X_1,\dots,X_n)\in R[X_0,X_1,\dots, X_n]$ is said to be homogenius of degree $ d$ if an equality

$\displaystyle f(\lambda X_0,\lambda X_1,\dots, \lambda X_n)
=
\lambda^d
f(X_0,X_1,\dots,X_n)
$

holds as a polynomial in $ n+2$ variables $ X_0,X_1,X_2,\dots, X_n, \lambda$ .

DEFINITION 8.3   Let $ k$ be a field.
  1. We put

    $\displaystyle \P ^n(k)=(k^{n+1}\setminus \{0\}) /k^\times
$

    and call it (the set of $ k$ -valued points of) the projective space. The class of an element $ (x_0,x_1,\dots,x_n)$ in $ \P ^n(k)$ is denoted by $ [x_0:x_1:\dots:x_n]$ .
  2. Let $ f_1,f_2,\dots, f_l \in k[X_0,\dots, X_n]$ be homogenious polynomials. Then we set

    % latex2html id marker 658
$\displaystyle V_h(f_1,\dots,f_l)=
\{
[x_0:x_1:x_2:\dots x_n] ; f_j (x_0,x_1,x_2,\dots,x_n)=0 \qquad(j=1,2,3,\dots,l)
\}.
$

    and call it (the set of $ k$ -valued point of) the projective variety defined by $ \{f_1,f_2,\dots,f_l\}$ .
(Note that the condition $ f_j(x)=0$ does not depend on the choice of the representative $ x\in k^{n+1}$ of $ [x]\in \P ^n(k)$ .)

THEOREM 8.4   Let $ p$ be a prime, % latex2html id marker 677
$ q$ be a power of $ p$ . Let % latex2html id marker 681
$ f(X_1,\dots,X_n)\in \mathbb{F}_q[X_1,\dots,X_n]$ be a polynomial of degree $ d$ . Let us put

% latex2html id marker 685
$\displaystyle N=\char93 \{x=(x_1,x_2,\dots,x_n)\in \mathbb{F}_q^n; f(x)=0 \}.
$

Then we have

$\displaystyle n>d  \implies p\vert N.
$

For the proof we use the following lemma

LEMMA 8.5   Let $ k$ be a positive integer. Then we have

\begin{displaymath}
% latex2html id marker 696\sum_{c \in \mathbb{F}_q} c^k=
\...
... \text{ if } (q-1)\vert k\\
0 & \text{ otherwise}.
\end{cases}\end{displaymath}


next up previous
Next: About this document ...
2007-06-15