
Zp, Qp, AND THE RING OF WITT VECTORS

No.08: ring of Witt vectors (2) The ring of universal Witt vectors

In the following, we use infinite sums and infinite products of elements of

W1(A) = 1+TA[[T ]]. They are defined as limits of sums and products with

respect to the filtration topology defined in the usual way.

Lemma 8.1. Let A be any commutative ring. Then every element of
1 + TA[[T ]] is written uniquely as

∞
∏

j=1

(1 − xjT
j) (xj ∈ A).

Proof. We may use an expansion
∞
∏

j=1

(1 − xjT
j) ≡ −xnT n + poly(x1, . . . , xn−1, T ) (mod T n+1)

to inductively determine xj . More precisely, for each n ∈ Z>0, let us
define a polynomial fn(X1, X2, . . . , Xn−1) in the following way:

fn(X1, . . . , Xn−1) = coeff(
n−1
∏

j=1

(1 − XjT
j), T n)

Then for any element 1 +
∑

∞

j=1
yjT

j ∈ 1 + TA[[T ]], we define

x1 = −y1, xn = −yn + fn(x1, . . . , xn−1) (∀n > 1).

Then it is easy to verify that an equation

1 +

∞
∑

j=1

yjT
j =

∞
∏

j=1

(1 − xjT
j)

holds. �

Corollary 8.2. W1(A) = 1 + TA[[T ]] is topologically generated by

{(1 − xjT
j); xj ∈ A, j = 1, 2, 3, . . .}.

Lemma 8.3. Let d, e be positive integers. Let m be the least common
multiple of d, e. Then we have

(1−xdT
d)∗L(1−xeT

e) = (1−x
m/d
d xm/e

e Tm)de/m(= (
de

m
)·L

(

1 − x
m/d
d xm/e

e Tm
)

).

(Note that m ≥ d, e.)

Proof. let d, e be positive integers. Let m be the least common
multiple of d, e. We have,

L(1 − xdT
d) ∗ L(1 − xeT

e) =
dxdT

d

1 − xdT d
∗ exeT

e

1 − xeT e
= de(

∞
∑

i=1

(xdT
d)i ∗

∞
∑

j=1

(xeT
e)j)

=de
∞

∑

u=1

x
mu/d
d xmu/e

e Tmu =
dex

m/d
d x

m/e
e Tm

1 − x
m/d
d x

m/e
e Tm

= −de

m

d

dT
log(1 − x

m/d
d xm/e

e Tm)

=L((1 − x
m/d
d xm/e

e Tm)de/m).

�
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Definition 8.4. Let A be any commutative ring. Then we define an
addition ⊞ and a multiplication ⊠ on W1(A) who satisfy the following
requirements:

(1) f ⊞ g = fg.
(2) For any positive integer d, e, Let m be the least common mul-

tiple of d, e. Then we have

(1 − xdT
d) ⊠ (1 − xeT

e) =
(

1 − x
m/d
d xm/e

e Tm
)

de
m

.

(3) for general f, g , the multiplication f ⊠ g is defined by first
expressing f, g as a formal ⊞-sum as in Lemma 8.3 and then
applying the rule 2 formally to each “⊞-summand”.

(Note that Lemma 8.1 guarantees the existence and the uniqueness
of such multiplication ⊠.)

Theorem 8.5. Let A be any commutative ring. Then:

(1) Any element of W1(A) is written uniquely as
∞

∑⊞

j=1

(1 − xjT
j).

(2) W1(A) forms a commutative ring under the binary operations
⊞ and ⊠. More precisely,
(a) (W1(A), ⊞) is an additive group with the zero element 1.
(b) The multiplication ⊠ is an associative commutative product

on W1(A) with the unit element 1 − T .
(c) The distributive law holds.

(3) When A ⊃ Q, the ring (W1(A), ⊞, ⊠) is isomorphic to (W0(A), +, ∗)
via the map LA = −T d

dT
log(•).

Proof. When A ⊃ Q, the statements trivially hold. This implies
in particular that rules such as distributivity and associativity hold for
universal cases (that means, for formal power series with indeterminate
coefficients). Thus we conclude by specialzation arguments that the
rule also hold for any ring A.

�

Definition 8.6. For any commutative ring A, elements of W1(A)
are called universal Witt vectors over A. The ring (W1(A), ⊞, ⊠) is
called the ring of universal Witt vectors over A.

Proposition 8.7. (W1(•), ⊞, ⊠) is uniquely determined by the fol-
lowing properties.

(1) f ⊞ g = fg (∀f, g ∈ W1(A).
(2) The multiplication ⊠ is ⊞-biadditive. (That means, W1(A), ⊞, ⊠)

obeys the distributive law.)
(3) (1 − xT ) ⊠ (1 − yT ) = (1 − (xy)T ) (∀x, y ∈ A).
(4) ⊠ is continuous.
(5) ⊠ is functorial.

Proof. We only need to prove the requirement (2) of Definition
8.4. With the help of distributive law, the requirement is satisfied if an
equation

(#) (1−xT a)⊠ (1−yT b) = (1−xm/aym/bTm)ab/m (m = l.c.m(a, b))

holds for each (a, b) ∈ (Z>0)
2.
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To that aim, we first deal with a special case where x = αa, y = βb,
A = C[α, β], α, β algebraically independent over C. In that case we
may easily decompose the polynomials (1 − xT a) and (1 − yT b) and
then we use the distributive law to see that the requirement actually
holds. Indeed, let us put

ζk = exp(2π
√
−1/k)

and compute as follows.

(1 − xT a) ⊠ (1 − yT b)

=
∑⊞

j,l

(1 − ζj
a(α)T ) ⊠ (1 − ζ l

b(β)T )

=
∑⊞

j,l

(1 − ζj
aζ

l
bαβT )

=
∏

l

(1 − ζal
b αaβaT a)

=
∏

l′

(1 − xβaT aζ l′

b/d)
d (d = g.c.d(a, b))

=(1 − xa/dyb/dT ab/d)d.

We second deal with a case where A = Z[x, y], x, y algebraically
independent over C. In that case we take a look at an inclusion

ι : Z[x, y] →֒ C[a, b].

and consider W1(ι). It is easy to see that W1(ι) is injection so that
the equation (#) is also true in this case. The general case now follows
from specialization argument. �


