next up previous
Next: About this document ...

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

Let us denote by $ C^\infty(M,N)$ the set of all differentiable maps from $ M$ to $ N$ . A so-called ``de Rham cohomology'' of $ S^1$ is computed as a cohomology of a complex

$\displaystyle C^\infty(S^1;\mathbb{R})
\overset{d/dt}{\to}
C^\infty(S^1;\mathbb{R}) .
$

We see that:

% latex2html id marker 758
$\displaystyle H^0_{\text{de Rham}}(S^1;\mathbb{R})=\mathbb{R},\quad
H^1_{\text{de Rham}}(S^1;\mathbb{R})=\mathbb{R}
$

Actually, the dimension of the 0 -th cohomology is related to a number of the connected component of $ S^1$ . The dimension of the $ 1$ -st cohomology is related to a number of the `hole' of $ S^1$ . Cohomology is then a good tool to obtain numbers (``invariants'') of geometric objects.

Cohomology also arises as ``obstructions''. Indeed, the de Rham cohomology of the $ S^1$ tells us a hint about ``which functions are integrable'', etc.

In this talk we give a definition and explain some basic properties of cohomologies. But before that, we first deal with some category theory.


DEFINITION 01.1   A category $ \mathcal{C}$ is a collection of the following data
  1. A collection $ \operatorname{Ob}(\mathcal{C})$ of objects of $ \mathcal{C}$ .
  2. For each pair of objects $ X,Y \in \operatorname{Ob}(\mathcal{C})$ , a set

    $\displaystyle \operatorname{Hom}_{\mathcal{C}}(X,Y)
$

    of morphisms.
  3. For each triple of objects $ X,Y,Z \in \operatorname{Ob}(\mathcal{C})$ , a map(``composition (rule)'')

    $\displaystyle \operatorname{Hom}_{\mathcal{C}}(X,Y)\times
\operatorname{Hom}_{\mathcal{C}}(Y,Z)\to
\operatorname{Hom}_{\mathcal{C}}(X,Z)
$

satisfying the following axioms
  1. $ \operatorname{Hom}(X,Y)\cap \operatorname{Hom}(Z,W) =\emptyset$ unless $ (X,Y)=(Z,W)$ .
  2. (Existence of an identity) For any $ X\in \operatorname{Ob}(\mathcal{C})$ , there exists an element $ \operatorname{id}_X\in \operatorname{Hom}(X,X)$ such that

    % latex2html id marker 796
$\displaystyle \operatorname{id}_X \circ f=f,\quad g \circ \operatorname{id}_X=g
$

    holds for any $ f \in \operatorname{Hom}(S,X), g \in \operatorname{Hom}(X,T)$ ( $ \forall S,T \in \operatorname{Ob}(\mathcal{C})$ ).
  3. (Associativity) For any objects $ X,Y,Z,W \in \operatorname{Ob}(\mathcal{C})$ , and for any morphisms $ f\in \operatorname{Hom}(X,Y), g\in \operatorname{Hom}(Y,Z), h \in \operatorname{Hom}(Z,W)$ , we have

    $\displaystyle (f\circ g)\circ h
=f\circ (g\circ h).
$

DEFINITION 01.2   A universe $ U$ is a nonempty set satisfying the following axioms:
  1. If $ x\in U$ and $ y\in x$ , then $ y\in U$ .
  2. If $ x,y\in U$ , then $ \{x,y\}\in U$ .
  3. If $ x\in U$ , then the power set $ 2^x\in U$ .
  4. If $ \{x_i \vert i\in I\}$ is a family of elements of $ U$ indexed by an element $ I\in U$ , then $ \cup_{i\in I} x_i\in U$ .

LEMMA 01.3   Let $ U$ be an universe. Then the following statements hold.
  1. If $ x\in U$ , then $ \{x\}\in U $ .
  2. If $ x$ is a subset of $ y\in U$ , then $ x\in U$ .
  3. If $ x,y\in U$ , then the ordered pair $ (x,y) = \{\{x,y\},x\}$ is in $ U$ .
  4. If $ x,y\in U$ , then $ x\cup y$ and $ x\times y$ are in $ U$ .
  5. If $ \{x_i \vert i\in I\}$ is a family of elements of $ U$ indexed by an element $ I\in U$ , then we have $ \prod_{i\in I} x_i \in U$ .

In this text we always assume the following.

For any set $ S$ , there always exists a universe $ U$ such that $ S\in U$ .

EXERCISE 01.1   Let us put

$\displaystyle C^\infty(\mathbb{R};\mathbb{R})=\{f: \in C^\infty(\mathbb{R};\mathbb{R}),$   support of $f$ is compact$\displaystyle \}
$

Then:
  1. Compute the cohomology group of the following complex.

    $\displaystyle C^\infty(\mathbb{R};\mathbb{R}) \to C^\infty(\mathbb{R}; \mathbb{R})
$

  2. Compute the cohomology group of the following complex.

    $\displaystyle C_{\operatorname{cpt}}^\infty(\mathbb{R};\mathbb{R}) \to C_{\operatorname{cpt}}^\infty(\mathbb{R}; \mathbb{R})
$


next up previous
Next: About this document ...
2009-05-28