next up previous
Next: About this document ...

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

\fbox{Examples of categories}

  1. (Sets)=(Category of all sets.) For $ X,Y\in ($Sets$ )$ , the set of morphism $ \operatorname{Hom}_{\text{(set)}}(X,Y)$ is defined to be the set of all maps from $ X$ to $ Y$ .
  2. (Groups)=(Category of all groups.) For $ X,Y\in ($Groups$ )$ , the set of morphism $ \operatorname{Hom}_{\text{(group)}}(X,Y)$ is defined to be the set of all group homomorphisms from $ X$ to $ Y$ .
  3. (Abelian groups), (Commutative Rings), are defined in a similar manner.
  4. For a given ring $ R$ , we define ($ R$ -modules) to be the category of all $ R$ -modules. Morphisms are $ R$ -module homomorphisms.
  5. (Top)=(Category of all topological spaces.) For $ X,Y\in ($Top$ )$ , the set of morphism $ \operatorname{Hom}_{\text{(top)}}(X,Y)$ is defined to be the set of all continuous maps from $ X$ to $ Y$ .
  6. (Hausdorff Sp.)=(the category of all Hausdorff spaces), (Compact Sp)=(the category of all Compact spaces) are defined in a similar manner.

DEFINITION 02.1   A (covariant) functor $ F$ from a category $ \mathcal C$ to a category $ \mathcal D$ consists of the following data:
  1. An function which assigns to each object $ C$ of $ \mathcal C$ an object $ F(C)$ of $ \mathcal D$ .
  2. An function which assigns to each morphism $ f$ of $ \mathcal C$ an morphism $ F(f)$ of $ \mathcal D$ .
The data must satisfy the following axioms:
functor-1.
$ F(1_C)=1_{F(C)}$ for any object $ C$ of $ \mathcal C$ .
functor-2.
$ F(f\circ g)=F(f)\circ F(g)$ for any composable morphisms $ f,g$ of $ \mathcal C$ .

By employing an axiom

(functor-$ 2'$ ) $ F(f\circ g)=F(g)\circ F(f)$ for any composable morphisms

instead of axiom (functor-2) above, we obtain a definition of a contravariant functor.


next up previous
Next: About this document ...
2009-04-17