next up previous
Next: Bibliography

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

\fbox{Resolutions and derived functors}

We recommend the book of Lang [1] as a good reference. The treatment here follows the book for the most part.

THEOREM 07.1   Let $ \mathcal{C}_1$ be an abelian category with enough injectives, and let $ F:\mathcal{C}_1\to \mathcal{C}_2$ be a covariant additive left functor to another abelian category $ \mathcal{C}_2$ . Then:
  1. $ F\cong R^0 F$ .
  2. For each short exact sequence

    $\displaystyle 0\to M'\to M \to M''\to 0
$

    and for each % latex2html id marker 622
$ n\geq 0$ there is a natural homomorphism

    $\displaystyle \delta^n: R^n F(M'')\to R^{n+1} F(M)
$

    such that we obtain a long exact sequence

    $\displaystyle \dots\to R^n F(M')\to R^n F(M) \to R^n F(M'')\overset{\delta^n}{\to}
R^{n+1} F(M')\to \dots.
$

  3. $ \delta$ is natural. That means, for a morphism of short exact sequences

    $\displaystyle \begin{CD}
0 @»> M'@»> M@»> M''@»> 0\\
@. @VVV @VVV @VVV \\
0@»> N'@»> N@»> N''@»> 0
\end{CD}$

    the $ \delta$ 's give a commutative diagram:

    $\displaystyle \begin{CD}
R^n F(M'') @> \delta^n » R^{n+1}F(M') \\
@VVV @VVV \\
R^nF(N'') @> \delta^n » R^{n+1} F(N')
\end{CD}$

  4. For each injective objective object $ I$ of $ A$ and for each $ n>0$ we have $ R^n F(I)$ .

LEMMA 07.2   For any exact sequence $ 0 \to M'\to M\to M''\to 0$ of objects in $ \mathcal{C}_1$ , There exists injective resolutions $ I_{M'},I_{M},I_{M''}$ of $ M',M,M''$ respectively and a commutative diagram

$\displaystyle \begin{CD}
@. 0 @. 0 @. 0@.\\
@. @VVV @VVV @VVV \\
0 @»> M'@»...
...@»> 0\\
@. @VVV @VVV @VVV \\
0@»> I_{M'}@»> I_M@»> I_{M''}@»> 0
\end{CD}$

such that the diagram of resolutions is exact.

DEFINITION 07.3   Let $ F$ be a left exact additive functor. An object $ X$ is called $ F$ -acyclic if $ R^n F(X)=0$ for all $ n>0$ .

THEOREM 07.4   Let

$\displaystyle 0\to M \to X^0 \to X^1 \to X^2 \to \dots
$

be a resolution of $ M$ by $ F$ -acyclics. Let

$\displaystyle 0\to M \to I^0 \to I^1 \to I^2 \to \dots
$

be an injective resolution. Then there exists a morphism of complexes $ X\to I$ extending the identity on $ M$ , and this morphism induces an isomorphism

$\displaystyle H^nF(X)\cong H^n (F(I))=R^n F(M)
$

for all % latex2html id marker 693
$ n\geq 0$ .

Note: Our notation of denoting complexes such as $ I_M$ differs from that in [1].

The book of Grivel [2] is also a good reference for our future arguments.


next up previous
Next: Bibliography
2009-06-18