next up previous
Next: Bibliography

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

\fbox{Examples of derived functors(2)} Tensor products and Tor.

DEFINITION 09.1   Let $ A$ be an associative unital (but not necessarily commutative) ring. Let $ L$ be a right $ A$ -module. Let $ M$ be a left $ A$ -module. For any ( $ \mathbb{Z}$ -)module $ N$ , an map

$\displaystyle \varphi: L\times M \to N
$

is called an $ A$ -balanced biadditive map if
  1. $ \varphi(x_1+x_2,y)=\varphi(x_1,y)+\varphi(x_2,y)$      $ (\forall x_1,\forall x_2\in L, \forall y\in M)$ .
  2. $ \varphi(x,y_1+y_2)=\varphi(x,y_1)+\varphi(x,y_2)$      $ (\forall x\in L, \forall y_1,\forall y_2\in M)$ .
  3. $ \varphi(x a, y)=\varphi(x, a y)$      $ (\forall x\in L, \forall y\in M, \forall a\in A)$ .

PROPOSITION 09.2   Let $ A$ be an associative unital (but not necessarily commutative) ring. Then for any right $ A$ -module $ L$ and for any left $ A$ -module $ M$ , there exists a ( $ \mathbb{Z}$ -)module $ X_{L,M}$ together with a $ A$ -balanced map

$\displaystyle \varphi_0: L\times M \to X_{L,M}
$

which is universal amoung $ A$ -balanced maps.

DEFINITION 09.3   We employ the assumption of the proposition above. By a standard argument on universal objects, we see that such object is unique up to a unique isomorphism. We call it the tensor product of $ L$ and $ M$ and denote it by

$\displaystyle L\otimes_A M.
$

LEMMA 09.4  
  1. $ A\otimes_A M \cong M$ .
  2. $ (L_1\oplus L_2) \otimes_A M
\cong
(L_1 \otimes M) \oplus (L_2 \otimes_A M ).
$
  3. For any $ M$ , $ L\mapsto L \otimes_A M$ is a right exact functor.

DEFINITION 09.5   For any left $ A$ -module $ M$ , the left derived functor $ L_j F(M)$ of $ F_M=\bullet \otimes_A M$ is called the Tor functor and denoted by $ \operatorname{Tor}^A_j(\bullet,M)$ .

By definition, $ \operatorname{Tor}^A_j(L,M)$ may be computed by using projective resolutions of $ L$ .

DEFINITION 09.6   For any group $ G$ , the derived functor of a functor

$\displaystyle F_G:(G-modules ) \to (modules )
$

defined by

$\displaystyle M\mapsto M_G=M/(\mathbb{Z}-$span$\displaystyle \{g.m-m; g\in G, M\in M\})
$

is called the homology of $ G$ with coefficients in $ M$ . We denote the homology group $ L_j F_G(M)$ by $ H_j(G;M)$ .

LEMMA 09.7  

$\displaystyle H_j(G;M)\cong \operatorname{Tor}^{\mathbb{Z}[G]}_j(\mathbb{Z}, M)
$


next up previous
Next: Bibliography
2009-07-10