next up previous
Next: Bibliography

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

\fbox{Adjoining inverses}

DEFINITION 10.1   Let $ A$ be a commutative ring. Let $ S$ be its subset. We say that $ S$ is multiplicative if
  1. $ 1\in S$
  2. $ x,y \in S  \implies  x y \in S $
holds.

DEFINITION 10.2   Let $ S$ be a multiplicative subset of a commutative ring $ A$ . Then we define $ A[S^{-1}]$ as

$\displaystyle A[\{X_s ; s \in S\}]/(\{ s X_s -1; s \in S\})
$

where in the above notation $ X_s$ is a indeterminate prepared for each element $ s \in S$ .) We denote by $ \iota_S $ a canonical map $ A\to A[S^{-1}]$ .

LEMMA 10.3   Let $ S$ be a multiplicative subset of a commutative ring $ A$ . Then the ring $ B=A[S^{-1}]$ is characterized by the following property:

Let $ C$ be a ring, $ \varphi:A\to C$ be a ring homomorphism such that $ \varphi(s)$ is invertible in $ C$ for any $ s \in S$ . Then there exists a unique ring homomorphism $ \psi=\phi[S^{-1}]:B\to C$ such that

$\displaystyle \varphi=\psi \circ \iota_S
$

holds.

COROLLARY 10.4   Let $ S$ be a multiplicative subset of a commutative ring $ A$ . Let $ I$ be an ideal of $ A$ given by

$\displaystyle I=\{ x \in I; \exists s \in S$    such that $\displaystyle s x=0\}
$

Then (1) $ I$ is an ideal of $ A$ . Let us put $ \bar{A}=A/I$ , $ \pi:A\to \bar{A}$ the canonical projection. Then:

(2) $ \bar{S}=\pi(S)$ is multiplicatively closed.

(3) We have

$\displaystyle A[S^{-1}]\cong\bar{A}[\bar{S}^{-1}]
$

(4) $ \iota_{\bar{S}}: \bar{A}\to \bar{A}[\bar{S}^{-1}]$ is injective.

DEFINITION 10.5   Let $ S$ be a multiplicative subset of a commutative ring $ A$ . Let $ M$ be an $ A$ -module we may define $ S^{-1}M$ as

$\displaystyle \{ (m/s); m\in M , s\in S\} / \sim
$

where the equivalence relation $ \sim$ is defined by

% latex2html id marker 871
$\displaystyle (m_1/s_1)\sim (m_2/s_2)  \iff  t (m_1 s_2 -m_2 s_1)=0 \quad (\exists t \in S).
$

We may introduce a $ S^{-1}A$ -module structure on $ S^{-1}M$ in an obvious manner.

$ S^{-1}M$ thus constructed satisfies an universality condition which the reader may easily guess.

LEMMA 10.6   Let $ A$ be a commutative ring. Let $ M$ be an $ A$ -module. Then we have a canonical isomorphism of $ A_S$ module

$\displaystyle A_S \otimes_A M \cong M_S.
$

We may also localize categories, but we need to deal with non commutativity of composition. To simplify the situation we only deal with a localization with some nice properties as follows:

    1. $ s, t \in \Sigma \implies s t \in \Sigma$
    2. $ X\in \operatorname{Ob}(\mathcal{C})\implies 1_X \in \Sigma$ .
  1. Let $ X,Y,Z\in \operatorname{Ob}(\mathcal{C})$ . Let $ u\in \operatorname{Hom}_\mathcal{C}(X,Y)$ , $ s\in \operatorname{Hom}_\mathcal{C}(Z,Y)\cap \Sigma$ . Then there exist $ W\in \operatorname{Ob}(\mathcal{C})$ and morphisms $ v\in \operatorname{Hom}_\mathcal{C}(W,Z)$ , and $ t\in \operatorname{Hom}_\mathcal{C}(W,X)\cap \Sigma$ such that the diagram

    $\displaystyle \begin{CD}
W @>v» Z \\
@Vt VV @V sVV \\
X @> u» Y
\end{CD}$

    commutes.

    In a simpler (but not rigorous) words, for each ``composable $ s^{-1} u $ '', there exists $ v,t $ such $ s^{-1}u= v t^{-1}$ . Similarly, for each composable $ u s^{-1} $ , there exists $ v,t $ such that $ u s^{-1}=t^{-1} v$ holds.

  2. Let $ X,Y\in \operatorname{Ob}(\mathcal{C})$ , $ u,v\in Hom_\mathcal{C}(X,Y)$ . Then the following conditions are equivalent:
    1. There exists $ Y'\in \operatorname{Ob}(\mathcal{C})$ and $ s \in \operatorname{Hom}_\mathcal{C}(Y,Y')\cap \Sigma$ such that $ su=sv$ .
    2. There exists $ X'\in \operatorname{Ob}(\mathcal{C})$ and $ t \in \operatorname{Hom}_\mathcal{C}(Y,Y')\cap \Sigma$ such that $ u t =v t$ .
  3. If $ s \in \Sigma$ and if $ su\in \Sigma$ then $ u \in \Sigma$ .

LEMMA 10.7   Let $ \Sigma$ be a family of morphisms in $ \mathcal{C}$ which satisfies the properties above. Then one may construct a localization of $ \mathcal{C}_\Sigma$ with respect to $ \Sigma$ . Furthermore, if $ \mathcal{C}$ is additive, then $ \mathcal{C}_\Sigma$ is also additive.


next up previous
Next: Bibliography
2009-07-09