CATEGORIES, ABELIAN CATEGORIES AND COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

Derived categories

We refer to [1] for a good guide to the theory.

Main idea: Instead of dealing with an object of an additive category \mathcal{C} , we deal with complexes of \mathcal{C} . But:

- (1) We want to regard quasi-isomorphic complexes as the "same".
- (2) We want to identify two morphisms to be the same if they are homotopic.

11.1. Cone of a complex. Assume we are talking about complexes of objects in an additive category C.

DEFINITION 11.1. [1, 4.1] For any complex X^{\bullet} , we define TX^{\bullet} to be a complex defined by

$$(TX)^i = X^{i+1}, \quad d_{TX} = -d_X.$$

DEFINITION 11.2. [1, 4.3] Let $u: X^{\bullet} \to Y^{\bullet}$ be a morphism of complexes. The cone C_u^{\bullet} of u is defined to be a graded object

 $Y^{\bullet} \oplus TX^{\bullet}$

equipped with the following differential:

$$d\begin{pmatrix} y\\ x \end{pmatrix} = \begin{pmatrix} d_Y & u\\ 0 & -d_X \end{pmatrix} \begin{pmatrix} y\\ x \end{pmatrix}$$

Idea 1: Instead of considering kernel and cokernel of a morphism u, we consider its cone C_u .

For any u, we have morphisms (triangle):

$$X^{\bullet} \xrightarrow{u} Y^{\bullet} \xrightarrow{\iota_Y} C^{\bullet}_u \xrightarrow{p_{TX}} TX^{\bullet}.$$

Let us call such a triangle **standard**. Now if C is abelian, then for each standard triangle as above we have the following long exact sequence:

$$\cdots \to H^k(X^{\bullet}) \to H^k(Y^{\bullet}) \to H^k(C_u^{\bullet}) \to H^{k+1}(X^{\bullet}) \to \dots$$

11.2. The category $K(\mathcal{C})$.

DEFINITION 11.3. [1, 5.1] For any additive category \mathcal{C} , we define $K(\mathcal{C})$ to be

- (1) $Ob(K(\mathcal{C})) = Ob(C(\mathcal{C}))$ (that means, objects of $K(\mathcal{C})$ are complexes).
- (2) For any objects X^{\bullet}, Y^{\bullet} of $K(\mathcal{C})$, we define

$$\operatorname{Hom}_{K(\mathcal{C})}(X^{\bullet}, Y^{\bullet}) = \operatorname{Hom}_{C(\mathcal{C})}(X^{\bullet}, Y^{\bullet}) / \operatorname{Homotopy}$$

Even if \mathcal{C} is abelian, $K(\mathcal{C})$ is no longer abelian in general [1, 5.7]. But $K(\mathcal{C})$ has **distinguished triangles**, which are triangles isomorphic to standard triangles.

YOSHIFUMI TSUCHIMOTO

11.3. The cateogory $D(\mathcal{C})$. We assume \mathcal{C} is an abelian category. We then add some inverses of quasi isomorphisms in $K(\mathcal{C})$ to define $D(\mathcal{C})$. $D(\mathcal{C})$ again is not necessarily be an abelian category, but it is a **triangulated category** which has distinguished triangles which satisfy certain axioms.

By considering only complexes which are bounded below, we may define $C^+(\mathcal{C}), K^+(\mathcal{C}), D^+(\mathcal{C})$ etc.

PROPOSITION 11.4. [1, 4.8] If \mathcal{C} has enough injectives then $D^+(\mathcal{C})$ is equivalent to $K^+(I(\mathcal{C}))$, where $I(\mathcal{C})$ is the category of injective objects in \mathcal{C} .

So, in a sence, to consider an object X^{\bullet} of $D^+(\mathcal{C})$ is to consider an injective resolution I^{\bullet} of X^{\bullet} and treat it up to homotopy.

For left-exact functor $C_1 \to C_2$, we may "define" (the actual definiton should be done more carefully. See [1])

$$\mathbb{R}F: D^+(\mathcal{C}_1) \to D^+(\mathcal{C}_2)$$

by

$$\mathbb{R}F(X^{\bullet}) = F(I^{\bullet})$$

where I^{\bullet} is an injective resolution of X^{\bullet} .

A good thing about treating derived functors in this way is that we may easily treat derived functors of compositions:

$$\mathbb{R}(F \circ G) \cong (\mathbb{R}F) \circ (\mathbb{R}G).$$

References

 P.P.Grivel, Catégorie dérivées et foncteurs dérivés, In: Algebraic D-modules, Perspectives in mathematics 2 (1997), 1–108.