next up previous
Next: The category Up: Categories, abelian categories and Previous: Categories, abelian categories and

Cone of a complex

Assume we are talking about complexes of objects in an additive category $ \mathcal{C}$ .

DEFINITION 11.1   [1, 4.1] For any complex $ X^\bullet$ , we define $ TX^\bullet$ to be a complex defined by

% latex2html id marker 781
$\displaystyle (TX)^i= X^{i+1} , \quad d_{T X} = -d_X.
$

DEFINITION 11.2   [1, 4.3] Let $ u:X^{\bullet} \to Y^{\bullet}$ be a morphism of complexes. The cone $ C_u^\bullet$ of $ u$ is defined to be a graded object

$\displaystyle Y^{\bullet} \oplus T X^{\bullet}
$

equipped with the following differential:

$\displaystyle d
\begin{pmatrix}
y \\
x
\end{pmatrix}=
\begin{pmatrix}
d_Y & u \\
0 & -d_X
\end{pmatrix}\begin{pmatrix}
y \\
x
\end{pmatrix}$

Idea 1: Instead of considering kernel and cokernel of a morphism $ u$ , we consider its cone $ C_u$ .

For any $ u$ , we have morphisms (triangle):

$\displaystyle X^\bullet \overset{u}{\to}
Y^\bullet
\overset {\iota_Y}{\to} C_u^\bullet
\overset {p_{T X}}{\to}
T X^\bullet.
$

Let us call such a triangle standard. Now if $ \mathcal{C}$ is abelian, then for each standard triangle as above we have the following long exact sequence:

$\displaystyle \dots \to H^k (X^\bullet)\to H^k (Y^\bullet) \to H^k(C_u^\bullet)
\to H^{k+1}(X^\bullet)\to \dots
$



2009-07-31