COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

01.Review of elementary definitions on modules. ‘

DEFINITION 1.1. A (unital associative) ring is a set R equipped
with two binary operations (addition (“4”) and multiplication (“”))
such that the following axioms are satisfied.

(Ringl) R is an additive group with respect to the addition.
(Ring2) distributive law holds. Namely, we have

a(b+c¢)=ab+be, (a+b)c=ac+bc (Va,Vb,Vc € R).

(Ring3) The multiplcation is associative.
(Ring4) R has a multiplicative unit.

For any ring R, we denote by Og (respectively, 1g) the zero element
of R (respectively, the unit element of R). Namely, O and 1g are
elements of R characterized by the following rules.

ea+0g=a, Or+a=aVaé€ER.
ea-lp=a, 1lgp-a=aVaé€ER.

When no confusion arises, we omit the subscript ‘g’ and write 0,1
instead of O, 15.

DEFINITION 1.2. Let R be a unital associative ring. An R-module
M is an additive group M with R-action

RxM—M

which satisfies

(Mod1) (rire).m =ri.(re.m)  (¥ry,Vry € R,Ym € M)

(Mod2) Im=m (Vm e M)

(Mod3) (r1 +19).m =ry.m+rom  (Vry,Vry € R,Vm € M).
(Mod4) r.(my +msg) =r.my +r.me  (Vr € R,Ymy,Vmy € M).

EXAMPLE 1.3. Let us give some examples of R-modules.

(1) If %k is a field, then the concepts “k-vector space” and “k-
module” are identical.

(2) Every abelian group is a module over the ring of integers Z in
a unique way.

DEFINITION 1.4. An subset M of an R-module N is said to be an
R-submodule of N if M itself is an R-module and the inclusion map
j: M — N is an R-module homomorphism.

DEFINITION 1.5. Let M, N be modules over a ring R. Then a map
f: M — N is called an R-module homomorphism if it is additive
and preserves the R-action.

The set of all module homomorphisms from M to N is denoted by
Hompg(M, N). It has an structure of an module in an obvious manner.

DEFINITION 1.6. An subset N of an R-module M is said to be an
R-submodule of M if N itself is an R-module and the inclusion map
J: N — M is an R-module homomorphism.
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DEFINITION 1.7. Let R be a ring. Let N be an R-submodule of an

R-module M. Then we may define the quotient M /N by

M/N = M/ ~y
where the equivalence relation ~y is defined as follows:

mp ~nN Mo <— mpy—myg € N.

It may be shown that the quotient M/N so defined is actually an R-
module and that the natural projection

m: M — M/N
is an R-module homomorphism.

DEFINITION 1.8. Let f : M — N be an R-module homomorphism
between R-modules. Then we define its kernel as follows.

Ker(f) = f~(0) = {m € M; f(m) = 0}.

The kernel and the image of an R-module homomorphism f are R-
modules.

THEOREM 1.9. Let f : M — N be an R-module homomorphism
between R-modules. Then

M/ Ker(f) = f(N).
DEFINITION 1.10. Let R be a ring. An “sequence”
My, L oM, &

is said to be an exact sequence of R-modules if the following con-
ditions are satisfied

(Exactl) M, My are R-modules.

(Exact2) f, g are R-module homomorphisms.

(Exact3) Ker(g) = Image(f).

For any R-submodule N of an R-module M, we have the following
exact sequence.

0—-N—>M-—M/N—O0

EXERCISE 1.1. Compute the following modules.
(1) Homg(Z/37Z,7Z).

(2) Homz(Q,Z).

(3) Homz(Q,Z/5Z).



