next up previous
Next: About this document ...

Cohomologies.

Yoshifumi Tsuchimoto

% latex2html id marker 759
\fbox{01.Review of elementary definitions on modules.}

DEFINITION 01.1   A (unital associative) ring is a set $ R$ equipped with two binary operations (addition (``+'') and multiplication (``$ \cdot$ '')) such that the following axioms are satisfied.
Ring1.
$ R$ is an additive group with respect to the addition.
Ring2.
distributive law holds. Namely, we have

% latex2html id marker 864
$\displaystyle a(b+c)=ab + bc,\quad (a+b)c=ac+bc \qquad (\forall a,\forall b,\forall c\in R).
$

Ring3.
The multiplcation is associative.
Ring4.
$ R$ has a multiplicative unit.

For any ring $ R$ , we denote by $ 0_R$ (respectively, $ 1_R$ ) the zero element of $ R$ (respectively, the unit element of $ R$ ). Namely, $ 0_R$ and $ 1_R$ are elements of $ R$ characterized by the following rules.

When no confusion arises, we omit the subscript `$ {}_R$ ' and write $ 0,1$ instead of $ 0_R,1_R$ .

DEFINITION 01.2   Let $ R$ be a unital associative ring. An $ R$ -module $ M$ is an additive group $ M$ with $ R$ -action

$\displaystyle R\times M\to M
$

which satisfies
Mod1.
$ (r_1 r_2). m= r_1.(r_2.m)$ % latex2html id marker 921
$ \quad
(\forall r_1, \forall r_2\in R, \forall m\in M)$
Mod2.
$ 1.m=m$ % latex2html id marker 925
$ \quad (\forall m \in M)$
Mod3.
$ (r_1+r_2).m=r_1.m+r_2.m$ % latex2html id marker 929
$ \quad (\forall r_1,\forall r_2\in R, \forall m \in M)$ .
Mod4.
$ r.(m_1+m_2)=r.m_1+r.m_2$ % latex2html id marker 933
$ \quad (\forall r\in R, \forall m_1,\forall m_2 \in M)$ .

EXAMPLE 01.3   Let us give some examples of $ R$ -modules.
  1. If $ k$ is a field, then the concepts ``$ k$ -vector space" and ``$ k$ -module'' are identical.
  2. Every abelian group is a module over the ring of integers $ \mathbb{Z}$ in a unique way.

DEFINITION 01.4   An subset $ M$ of an $ R$ -module $ N$ is said to be an $ R$ -submodule of $ N$ if $ M$ itself is an $ R$ -module and the inclusion map $ j:M\to N$ is an $ R$ -module homomorphism.

DEFINITION 01.5   Let $ M,N$ be modules over a ring $ R$ . Then a map $ f:M\to N$ is called an $ R$ -module homomorphism if it is additive and preserves the $ R$ -action.

The set of all module homomorphisms from $ M$ to $ N$ is denoted by $ \operatorname{Hom}_R (M,N)$ . It has an structure of an module in an obvious manner.

DEFINITION 01.6   An subset $ N$ of an $ R$ -module $ M$ is said to be an $ R$ -submodule of $ M$ if $ N$ itself is an $ R$ -module and the inclusion map $ j:N\to M$ is an $ R$ -module homomorphism.

DEFINITION 01.7   Let $ R$ be a ring. Let $ N$ be an $ R$ -submodule of an $ R$ -module $ M$ . Then we may define the quotient $ M/N$ by

$\displaystyle M/N=M/\sim_N
$

where the equivalence relation $ \sim_N$ is defined as follows:

% latex2html id marker 1038
$\displaystyle m_1 \sim_N m_2 \quad \iff \quad m_1-m_2\in N.
$

It may be shown that the quotient $ M/N$ so defined is actually an $ R$ -module and that the natural projection

$\displaystyle \pi: M\to M/N
$

is an $ R$ -module homomorphism.

DEFINITION 01.8   Let $ f:M\to N$ be an $ R$ -module homomorphism between $ R$ -modules. Then we define its kernel as follows.

$\displaystyle \operatorname{Ker}(f)=f^{-1}(0)=\{ m\in M; f(m)=0\}.
$

The kernel and the image of an $ R$ -module homomorphism $ f$ are $ R$ -modules.

THEOREM 01.9   Let $ f:M\to N$ be an $ R$ -module homomorphism between $ R$ -modules. Then

$\displaystyle M/\operatorname{Ker}(f) \cong f(N).
$

DEFINITION 01.10   Let $ R$ be a ring. An ``sequence''

$\displaystyle M_1\overset {f}{\to} M_2 \overset{g}{\to} M_3
$

is said to be an exact sequence of $ R$ -modules if the following conditions are satisfied
Exact1.
$ M_1,M_2$ are $ R$ -modules.
Exact2.
$ f,g$ are $ R$ -module homomorphisms.
Exact3.
$ \operatorname{Ker}(g)=\operatorname{Image}(f)$ .

For any $ R$ -submodule $ N$ of an $ R$ -module $ M$ , we have the following exact sequence.

$\displaystyle 0\to N\to M\to M/N \to 0
$

EXERCISE 01.1   Compute the following modules.
  1. $ \operatorname{Hom}_\mathbb{Z}(\mathbb{Z}/3\mathbb{Z},\mathbb{Z})$ .
  2. $ \operatorname{Hom}_\mathbb{Z}(\mathbb{Q},\mathbb{Z})$ .
  3. $ \operatorname{Hom}_\mathbb{Z}(\mathbb{Q},\mathbb{Z}/5\mathbb{Z})$ .


next up previous
Next: About this document ...
2010-04-15