第5回目の主題: 加群の直和、自由加群

定義 5.1. 環 A 上の加群 M_1, M_2 が与えられているとする。直積集合 $M_1 \times M_2$ に次のように和、スカラー倍を定義して A-加群の構造を入れることができる。

$$\binom{m_1}{m_2} + \binom{n_1}{n_2} = \binom{m_1 + n_1}{m_1 + n_2} \qquad (m_1, n_1 \in M_1, m_2, n_2 \in M_2)$$

$$r. \binom{m_1}{m_2} = \binom{r.m_1}{r.m_2} \qquad (m_1 \in M_1, m_2 \in M_2, r \in A)$$

この加群を M_1, M_2 の直和 とよび、 $M_1 \oplus M_2$ と書く。

有限個の A-加群 M_1,M_2,\dots,M_k の直和 $\oplus_{j=1}^k M_j$ も同様に定義される。同じ加群 M の k 個の直和 $M\oplus M\oplus\dots\oplus M$ のことを $M^{\oplus k}$ と書く。

補題 **5.2.** 有限個の A-加群 M_1, M_2, \ldots, M_k が与えられた時、

(1) 各 $i \in \{1, 2, 3, \dots, k\}$ について

$$\pi_i \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix}) = m_i$$

で定義される π_i は 直和 $\bigoplus_{j=1}^k M_j$ から M_j への A-準同型である。これを**標準的な**射影とよぶ。

(2) 各 $i \in \{1, 2, 3, \dots, k\}$ について

$$\iota_i(m_i) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ m_i \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 (i 番目の成分のみ m_i であとは 0 .)

で定義される ι_i は M_i から直和 $\oplus_{j=1}^k M_j$ への A-準同型である。これを標準的な入射とよぶ。

直和の間の写像は次のように行列的に分解できる。

命題 5.3. 環 A 上の加群 M_1, M_2, \ldots, M_k から N_1, \ldots, N_l への A-準同型 ϕ が与えられたとする。このとき ϕ は

$$\phi\begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix} = \begin{pmatrix} \phi_{11}(m_1) + \phi_{12}(m_2) + \dots + \phi_{1k}(m_k) \\ \phi_{21}(m_1) + \phi_{22}(m_2) + \dots + \phi_{2k}(m_k) \\ \vdots \\ \phi_{l1}(m_1) + \phi_{l2}(m_2) + \dots + \phi_{lk}(m_k) \end{pmatrix}$$

と分解される。ここに $\phi_{ij} = \pi_i \circ \phi \circ \iota_j$. これはまた次のように 略記 される。

$$\phi\begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix} = \begin{pmatrix} \phi_{11} & \phi_{12} & \dots & \phi_{1k} \\ \phi_{21} & \phi_{22} & \dots & \phi_{2k} \\ \vdots \\ \phi_{l1} & \phi_{l2} & \dots & \phi_{lk} \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix}$$

定義 5.4. 環 A にたいし、A 自身を左 A-加群とみなすことができる。そのいくつかの直和として得られる加群 (と A-加群として同型な加群) を A 上の自由 A-加群と呼ぶ。

定理 5.5. A-加群 M の元 e_1, e_2, \ldots, e_k が次の二条件を満たすとする。

- (BASE1) M は A 上 $\{e_1, e_2, \dots, e_k\}$ で生成される。すなわち、 $M = Ae_1 + Ae_2 + \dots + Ae_k$ が成り立つ。
- (BASE2) $\{e_1, e_2, \dots, e_k\}$ は A 上一次独立である。 このとき、

$$A^{\oplus k} \ni {}^{t}(a_1, a_2, \dots, a_k) \mapsto \sum_{j} a_j e_j \in M$$

は同型である 1 。とくに、M は自由加群である。(このような状況の時、M は e_1, e_2, \ldots, e_k を基底とする自由加群であると言う。)

命題 5.6. 環 A が与えられているとする。このとき、

(1) 任意の元 $c \in A$ に対して、

$$\rho_c: A \ni x \mapsto xc \in A$$

はA (を左A 群と見たもの) からそれ自身へのA-準同型である。

(2) 逆に、A (を左 A 群と見たもの) からそれ自身への任意の A-準同型 φ にたいして、ある $c_{\omega} \in A$ があって、

$$\varphi = \rho_{c_{\omega}}$$

が成り立つ。

系 5.7. $A^{\oplus k}$ から $A^{\oplus l}$ への任意の A-準同型 φ は、

$$\varphi\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix}) = \begin{pmatrix} \rho_{c_{11}} & \rho_{c_{12}} & \dots & \rho_{c_{1k}} \\ \rho_{c_{21}} & \rho_{c_{22}} & \dots & \rho_{c_{2k}} \\ \vdots & & & & \\ \rho_{c_{l1}} & \rho_{c_{l2}} & \dots & \rho_{c_{lk}} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix}$$

と書ける。

定義 5.8. A-加群 M_1 から A-加群 M_2 への A-準同型の全体を

$$\operatorname{Hom}_A(M_1, M_2)$$

と書き表す。

命題 **5.9.** 環 *A* が与えられているとする。

(1) A-加群 M_1, M_2 に対して、 $\operatorname{Hom}_A(M_1, M_2)$ は次のような「値ごとの和」によって 加群の構造を持つ。

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x) \qquad (x \in M_1)$$

(2) A-加群 M に対して、 $\operatorname{End}_A(M,M) = \operatorname{Hom}_A(M,M)$ は上の和と、「写像の合成」 による積により環の構造を持つ。

(下記の問題のように) M に A-加群以外の構造がある場合には、区別のため上の意味の $\operatorname{End}_A(M,M)$ のことを $\operatorname{End}_{A\operatorname{-module}}(M)$ 等と書くことがある。

問題 5.1. $\rho: A \to \operatorname{End}_{A\operatorname{-module}}(A)$ は「環の反準同型」であること、すなわち、

$$\rho_{c_1+c_2} = \rho_{c_1} + \rho_{c_2}$$
$$\rho_{c_1c_2} = \rho_{c_2} \circ \rho_{c_1}$$

を示しなさい。

 $^{^{1}}$ 注: t は転置行列を表す。(講義ではこの t はなかったが、正確を期すため WEB 版でのみ訂正した)。)