next up previous
Next: Bibliography

Commutative algebra

Yoshifumi Tsuchimoto

% latex2html id marker 977
\fbox{01.Review of elementary definitions on modules.}

DEFINITION 01.1   A (unital associative) ring is a set $ R$ equipped with two binary operations (addition (``+'') and multiplication (``$ \cdot$ '')) such that the following axioms are satisfied.
Ring-1.
$ R$ is an additive group with respect to the addition.
Ring-2.
distributive law holds. Namely, we have

% latex2html id marker 1191
$\displaystyle a(b+c)=ab + bc,\quad (a+b)c=ac+bc \qquad (\forall a,\forall b,\forall c\in R).
$

Ring-3.
The multiplcation is associative.
Ring-4.
$ R$ has a multiplicative unit.

In this lectuer we are mainly interested in commutative rings, that means, rings on which the multiplication satisfies the commutativity law.

For any ring $ R$ , we denote by $ 0_R$ (respectively, $ 1_R$ ) the zero element of $ R$ (respectively, the unit element of $ R$ ). Namely, $ 0_R$ and $ 1_R$ are elements of $ R$ characterized by the following rules.

When no confusion arises, we omit the subscript `$ {}_R$ ' and write $ 0,1$ instead of $ 0_R,1_R$ .

DEFINITION 01.2   A map $ R\to S$ from a unital associative ring $ R$ to another unital associative ring $ S$ is said to be ring homomorphism if it satisfies the following conditions.
Ringhom-1.
$ f(a+b)=f(a)+f(b)$
Ringhom-2.
$ f(ab)=f(a) f(b)$
Ringhom-3.
$ f(1_R)=1_S$

DEFINITION 01.3   Let $ R$ be a unital associative ring. An $ R$ -module $ M$ is an additive group $ M$ with $ R$ -action

$\displaystyle R\times M\to M
$

which satisfies
Mod-1.
$ (r_1 r_2). m= r_1.(r_2.m)$ % latex2html id marker 1265
$ \quad
(\forall r_1, \forall r_2\in R, \forall m\in M)$
Mod-2.
$ 1.m=m$ % latex2html id marker 1269
$ \quad (\forall m \in M)$
Mod-3.
$ (r_1+r_2).m=r_1.m+r_2.m$ % latex2html id marker 1273
$ \quad (\forall r_1,\forall r_2\in R, \forall m \in M)$ .
Mod-4.
$ r.(m_1+m_2)=r.m_1+r.m_2$ % latex2html id marker 1277
$ \quad (\forall r\in R, \forall m_1,\forall m_2 \in M)$ .

EXAMPLE 01.4   Let us give some examples of $ R$ -modules.
  1. If $ k$ is a field, then the concepts ``$ k$ -vector space" and ``$ k$ -module'' are identical.
  2. Every abelian group is a module over the ring of integers $ \mathbb{Z}$ in a unique way.

DEFINITION 01.5   Let $ M,N$ be modules over a ring $ R$ . Then a map $ f:M\to N$ is called an $ R$ -module homomorphism if it is additive and preserves the $ R$ -action.

The set of all module homomorphisms from $ M$ to $ N$ is denoted by $ \operatorname{Hom}_R (M,N)$ . It has an structure of an module in an obvious manner. Furthermore, when $ R$ is a commutative ring, then it has a structure of an $ R$ -module.

DEFINITION 01.6   An subset $ M$ of an $ R$ -module $ N$ is said to be an $ R$ -submodule of $ N$ if $ M$ itself is an $ R$ -module and the inclusion map $ j:M\to N$ is an $ R$ -module homomorphism.

DEFINITION 01.7   An subset $ N$ of an $ R$ -module $ M$ is said to be an $ R$ -submodule of $ M$ if $ N$ itself is an $ R$ -module and the inclusion map $ j:N\to M$ is an $ R$ -module homomorphism.

DEFINITION 01.8   Let $ R$ be a ring. Let $ N$ be an $ R$ -submodule of an $ R$ -module $ M$ . Then we may define the quotient $ M/N$ by

$\displaystyle M/N=M/\sim_N
$

where the equivalence relation $ \sim_N$ is defined as follows:

% latex2html id marker 1386
$\displaystyle m_1 \sim_N m_2 \quad \iff \quad m_1-m_2\in N.
$

It may be shown that the quotient $ M/N$ so defined is actually an $ R$ -module and that the natural projection

$\displaystyle \pi: M\to M/N
$

is an $ R$ -module homomorphism.

DEFINITION 01.9   Let $ f:M\to N$ be an $ R$ -module homomorphism between $ R$ -modules. Then we define its kernel as follows.

$\displaystyle \operatorname{Ker}(f)=f^{-1}(0)=\{ m\in M; f(m)=0\}.
$

The kernel and the image of an $ R$ -module homomorphism $ f$ are $ R$ -modules.

THEOREM 01.10   Let $ f:M\to N$ be an $ R$ -module homomorphism between $ R$ -modules. Then

$\displaystyle M/\operatorname{Ker}(f) \cong f(N).
$

DEFINITION 01.11   Let $ R$ be a ring. An ``sequence''

$\displaystyle M_1\overset {f}{\to} M_2 \overset{g}{\to} M_3
$

is said to be an exact sequence of $ R$ -modules if the following conditions are satisfied
Exact1.
$ M_1,M_2$ are $ R$ -modules.
Exact2.
$ f,g$ are $ R$ -module homomorphisms.
Exact3.
$ \operatorname{Ker}(g)=\operatorname{Image}(f)$ .

For any $ R$ -submodule $ N$ of an $ R$ -module $ M$ , we have the following exact sequence.

$\displaystyle 0\to N\to M\to M/N \to 0
$

EXERCISE 01.1   Compute the following modules.
  1. $ \operatorname{Hom}_\mathbb{Z}(\mathbb{Z}/3\mathbb{Z},\mathbb{Z})$ .
  2. $ \operatorname{Hom}_\mathbb{Z}(\mathbb{Q},\mathbb{Z})$ .
  3. $ \operatorname{Hom}_\mathbb{Z}(\mathbb{Q},\mathbb{Z}/5\mathbb{Z})$ .

DEFINITION 01.12   Let $ A$ be an associative unital (but not necessarily commutative) ring. Let $ L$ be a right $ A$ -module. Let $ M$ be a left $ A$ -module. For any ( $ \mathbb{Z}$ -)module $ N$ , an map

$\displaystyle \varphi: L\times M \to N
$

is called an $ A$ -balanced biadditive map if
  1. $ \varphi(x_1+x_2,y)=\varphi(x_1,y)+\varphi(x_2,y)$      $ (\forall x_1,\forall x_2\in L, \forall y\in M)$ .
  2. $ \varphi(x,y_1+y_2)=\varphi(x,y_1)+\varphi(x,y_2)$      $ (\forall x\in L, \forall y_1,\forall y_2\in M)$ .
  3. $ \varphi(x a, y)=\varphi(x, a y)$      $ (\forall x\in L, \forall y\in M, \forall a\in A)$ .

PROPOSITION 01.13   Let $ A$ be an associative unital (but not necessarily commutative) ring. Then for any right $ A$ -module $ L$ and for any left $ A$ -module $ M$ , there exists a ( $ \mathbb{Z}$ -)module $ X_{L,M}$ together with a $ A$ -balanced map

$\displaystyle \varphi_0: L\times M \to X_{L,M}
$

which is universal amoung $ A$ -balanced maps.

DEFINITION 01.14   We employ the assumption of the proposition above. By a standard argument on universal objects, we see that such object is unique up to a unique isomorphism. We call it the tensor product of $ L$ and $ M$ and denote it by

$\displaystyle L\otimes_A M.
$

LEMMA 01.15   Let $ A$ be an associative unital ring. Then:
  1. $ A\otimes_A M \cong M$ .
  2. $ (L_1\oplus L_2) \otimes_A M
\cong
(L_1 \otimes M) \oplus (L_2 \otimes_A M ).
$
  3. For any left $ A$ -module $ M$ , the functor $ L\mapsto L \otimes_A M$ is a right exact functor. Namely, for any exact sequence

    $\displaystyle 0\to L_1\to L_2 \to L_3 \to 0,
$

    the sequence

    $\displaystyle L_1 \otimes_A M\to L_2 \otimes_A M \to L_3 \otimes_A M\to 0,
$

    is also exact.
  4. For any right ideal $ J$ of $ A$ and for any $ A$ -module $ M$ , we have

    $\displaystyle (A/J) \otimes_A M \cong M/ J.M
$

In particular, if the ring $ A$ is commutative, then for any ideals $ I,J$ of $ A$ , we have

$\displaystyle (A/I) \otimes_A (A/J) \cong A/ (I+ J)
$

EXERCISE 01.2   Compute $ (\mathbb{Z}/3 \mathbb{Z}) \otimes_\mathbb{Z}(\mathbb{Z}/4\mathbb{Z})$ and $ \mathbb{Q}\otimes _\mathbb{Z}(\mathbb{Z}/3\mathbb{Z})$ .

DEFINITION 01.16   A left $ A$ -module $ M$ is said to be flat if $ L\mapsto L \otimes_A M$ is an exact functor. Namely, for any exact sequence

$\displaystyle 0\to L_1\to L_2 \to L_3 \to 0,
$

of left $ A$ -modules, the sequence

$\displaystyle 0\to L_1 \otimes_A M\to L_2 \otimes_A M \to L_3 \otimes_A M\to 0,
$

is also exact.

**The following two facts may give some intuitive idea of what flatness means.

THEOREM 01.17   If $ A$ is a Noetherian ring and $ M$ is a finitely-generated $ R$ -module, then $ M$ is flat over $ A$ if and only if the associated sheaf $ \tilde{M}$ on $ \operatorname{Spec}(A)$ is locally free.

THEOREM 01.18   [1, Theorem 23.1+Theorem 15.1] Let $ (A,\mathfrak{m}_A)$ be a regular local ring. Let $ (B,\mathfrak{m}_B)$ be a Cohen-Macaulay local ring. Let $ \varphi: A\to B$ be a local ring homomorphism.We set

$\displaystyle F=B\otimes_A k(\mathfrak{m}_A) =B/\mathfrak{m}_A B
$

for the fiber ring of $ \varphi$ over $ \mathfrak{m}_A$ . Then an equality

$\displaystyle \dim B=\dim A+ \dim F
$

holds if and only if $ B$ is flat over $ A$ .

**


next up previous
Next: Bibliography
2011-04-14