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02. Localization

Definition 2.1. Let A be a commutative ring. Let S be its subset.
We say that S is multiplicative if

(1) 1 ∈ S
(2) x, y ∈ S =⇒ xy ∈ S

holds.

Definition 2.2. Let S be a multiplicative subset of a commutative
ring A. Then we define A[S−1] as

A[{Xs; s ∈ S}]/({sXs − 1; s ∈ S})

where in the above notation Xs is a indeterminate prepared for each
element s ∈ S.) We denote by ιS a canonical map A→ A[S−1].

Lemma 2.3. Let S be a multiplicative subset of a commutative ring

A. Then the ring B = A[S−1] is characterized by the following property:

Let C be a ring, ϕ : A → C be a ring homomorphism such that

ϕ(s) is invertible in C for any s ∈ S. Then there exists a unique ring

homomorphism ψ = φ[S−1] : B → C such that

ϕ = ψ ◦ ιS

holds.

Corollary 2.4. Let S be a multiplicative subset of a commutative

ring A. Let I be an ideal of A given by

I = {x ∈ I; ∃s ∈ S such that sx = 0}

Then I is an ideal of A. Let us put Ā = A/I, π : A→ Ā the canonical

projection. Then:

(1) S̄ = π(S) is multiplicatively closed.

(2) We have

A[S−1] ∼= Ā[S̄−1]

(3) ιS̄ : Ā→ Ā[S̄−1] is injective.

There is another description of A[S−1]. Namely, We consider an
equivalence relateion ∼S on a set S × A by

(s1, a1) ∼S (s2, a2) ⇐⇒ t(s1a2 − s2a1) = 0(∃t ∈ S)

We call the quotient space space S × A/ ∼S as S−1A. The equiva-
lence class of (s, a) ∈ S × A in S−1A is denoted by s−1a. Then it is
easy to introduce a ring structure of S−1A and see that S−1A actually
satisfies the universal property of A[S−1]. We thus have a canonical
isomorphism S−1A ∼= A[S−1].

Example 2.5. Af = A[S−1] for S = {1, f, f 2, f 3, f 4, . . . }. The total
ring of quotients Q(A) is defined as A[S−1] for

S = {x ∈ A; x is not a zero divisor of A}.
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When A is an integral domain, then Q(A) is the field of quotients of
A.

Definition 2.6. Let A be a commutative ring. Let p be its prime
ideal. Then we define the localization of A with respect to p by

Ap = A[(A \ p)−1]

Definition 2.7. Let S be a multiplicative subset of a commutative
ring A. Let M be an A-module we may define S−1M as

{(m/s);m ∈M, s ∈ S}/ ∼

where the equivalence relation ∼ is defined by

(m1/s1) ∼ (m2/s2) ⇐⇒ t(m1s2 −m2s1) = 0 (∃t ∈ S).

We may introduce a S−1A-module structure on S−1M in an obvious
manner.

S−1M thus constructed satisfies an universality condition which the
reader may easily guess.
By a universality argument, we may easily see the following propo-

sition.

Proposition 2.8. Let A be a commutative ring. Let S be a multi-

plicative subet of A. Let M be an A-module. Then we have an isomor-

phism

S−1A⊗A M ∼= S−1M

of S−1A-modules.

Proposition 2.9. Let A be a commutative ring. Let S be a mul-

tiplicative subet of A. Then the natural homomorphism A → S−1A is

flat.

2.1. local rings.

Definition 2.10. A commutative ring A is said to be a local ring if
it has only one maximal ideal.

Example 2.11. We give examples of local rings here.

• Any field is a local ring.
• For any commutative ring A and for any prime ideal p ∈ Spec(A),
the localization Ap is a local ring with the maximal ideal pAp.

Lemma 2.12. (1) Let A be a local ring. Then the maximal ideal

of A coincides with A \ A×.

(2) A commutative ring A is a local ring if and only if the set A\A×

of non-units of A forms an ideal of A.

Proof. (1) Assume A is a local ring with the maximal ideal m.
Then for any element f ∈ A\A×, an ideal I = fA+m is an ideal of A.
By Zorn’s lemma, we know that I is contained in a maximal ideal of
A. From the assumption, the maximal ideal should be m. Therefore,
we have

fA ⊂ m

which shows that
A \ A× ⊂ m.

The converse inclusion being obvious (why?), we have

A \ A× = m.
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(2) The “only if” part is an easy corollary of (1). The “if” part is also
easy.

�

Corollary 2.13. Let A be a commutative ring. Let p its prime

ideal. Then Ap is a local ring with the only maximal ideal pAp.

Definition 2.14. Let A,B be local rings with maximal idealsmA,mB

respectively. A local homomorphism ϕ : A → B is a homomorphism
which preserves maximal ideals. That means, a homomorphism ϕ is
said to be loc al if

ϕ−1(mB) = mA

Example 2.15 (of NOT being a local homomorphism).

Z(p) → Q

is not a local homomorphism.

In the argument above, we have used the following lemma.

Lemma 2.16 (Zorn’s lemma). Let S be a partially ordered set. As-

sume that every totally ordered subset of S has an upper bound in S.

Then S has at least one maximal element.

We prove here another consequence of the lemma.

Proposition 2.17. Let A be a commutative ring. let I be an ideal

of A such that A 6= I. Then there exists a maximal ideal m of A which

contains I.


