逆関数

定義 12.1 ("§3 (I)(p.18)"). 実数のある区間 I で定義された関数 f が 狭義単調増加関数であるとは、

$$x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) < f(x_2)$$

をみたすときにいう。後半の $f(x_1) < f(x_2)$ を $f(x_1) \le f(x_2)$ に置き換えることにより、(広義) 単調増加関数が定義される。

たまに狭義単調増加の条件を 「f(x) < f(x+1)」 と同じと勘違いしている学生を見かける。数列の時の類推であろうが、これはもちろん間違い。 $x(\sin(2\pi x)+2)$ を考えてみれば良い。(ウラ面の図も参照)

定理 12.2. ("定理 17 の系") f が閉区間 [a,b] 上の狭義単調増加な連続関数であれば、

$$f: [a,b] \rightarrow [f(a),f(b)]$$

の逆関数

$$f^{-1}: [f(a), f(b)] \to [a, b]$$

が存在する。さらに、この f^{-1} は連続で、かつ狭義単調増加である。

例 12.3. 正の整数 n に対して、0 以上の実数を定義域とする関数 f : $\mathbb{R}_{\geq 0}\ni x\mapsto x^n\in\mathbb{R}_{\geq 0}$ は連続であり、狭義単調増加である。この関数は全射でもあるから、f は逆写像を持つ。この関数を

$$x \to \sqrt[n]{x}$$

と書く。つまり $y = \sqrt[n]{x}$ は $y^n = x$ を満たす唯一の正の実数である。

命題 12.4. 任意の正の実数 x に対して、

$$\sqrt[n]{x^k} = (\sqrt[n]{x})^k$$

がなりたつ。

Proof. $y = \sqrt[n]{x}$ とおくと、定義により、 $y^n = x$.

$$(y^k)^n = y^{kn} = (y^n)^k = x^k.$$

ゆえに、 y^k は n 乗して x^k になる実数である。そのような実数は唯一つ、すなわち $\sqrt[n]{x^k}$ しかないのであるから、両者は等しい。

同様にして、次のことが分かる。

命題 12.5. 正の整数 a,b,c,d が a/b=c/d を満たせば、任意の正の実数 x にたいして、

$$\sqrt[b]{x^a} = \sqrt[d]{x^c}$$

がなりたつ。

この命題がなりたつので、 $\sqrt[b]{x^a}$ のことを $x^{\frac{a}{b}}$ と書いても誤解の恐れがない。

補題 **12.6.** 1 より大きい実数 x と有理数 q_1, q_2 にたいして、

$$q_1 < q_2 \implies x^{q_1} < x^{q_2}$$

が成り立つ。

問題 12.1. 次のことを示しなさい。

$$\forall \epsilon > 0 \exists \delta > 0; \forall q \in \mathbb{Q}(|q| < \delta \implies |2^q - 1| < \epsilon)$$

逆関数の別の例を挙げよう:

例 12.7. この例では、高校で習う三角関数の知識は既知であるとする。

- (1) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ni x \mapsto \sin(x) \in [-1, 1]$ は狭義単調増加連続関数である。 その逆関数のことを $\arcsin(x)$ と書く。
- (2) $[0,\pi] \ni x \mapsto \cos(x) \in [-1,1]$ は狭義単調減少連続関数である。 その逆関数のことを $\arccos(x)$ と書く。
- (3) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \ni x \mapsto \tan(x) \in \mathbb{R}$ は狭義単調増加連続関数である。その逆関数のことを $\arctan(x)$ と書く。

 \arcsin , \arccos , \arctan はそれぞれ \sin^{-1} , \cos^{-1} , \tan^{-1} などと書くこともある。

中間値の定理の証明が途中になってしまったので、ここでその証明を書いておこう。 $f:[a,b] \to \mathbb{R}$ に対して、 $f(a) < \gamma < f(b)$ と仮定する。

$$S = \{c \in [a, b]; \forall x \in [a, c] \ \text{little f}(x) \leq \gamma\}$$

とおく。仮定 $f(a) < \gamma$ により $a \in S$ がわかる。とくに、 $S \neq \emptyset$ である。他方で S は [a,b] の部分集合だから、有界。ゆえに、S は上限 c_0 をもつ。

(1) $f(c_0) > \gamma$ の場合。

仮定 $(f(a) < \gamma)$ により $c_0 \neq a$ がわかる。f は c_0 において連続であるから、 $\epsilon = f(c_0) - \gamma(>0)$ に対して、ある $\delta > 0$ が存在して、

$$(x \in [a, b] \text{ and } |x - c_0| < \delta) \implies |f(x) - f(c_0)| < \epsilon.$$

とくに、x として $x_0=\max(c_0-\delta/2,a)$ をとれば, $|x_0-c_0|<\delta$ かつ $x_0\in[a,b]$ であるから、

$$(12.1) f(x_0) > f(c_0) - \epsilon = \gamma.$$

他方で c_0 は S の上限であるから、 $S\cap(x_0,c_0]$ にはある元 s_0 が存在する。 $x_0< s_0$ であることと、S の定義をみると、 $f(x_0)\leq \gamma$ がわかる。 これは (12.1) 式と矛盾する。

(2) $f(c_0) < \gamma$ の場合。

仮定 $(f(b) > \gamma)$ により $c_0 \neq b$ がわかる。f は c_0 において連続であるから、 $\epsilon = \gamma - f(c_0)$ に対して、ある $\delta > 0$ が存在して、

$$(x \in [a, b] \text{ and } |x - c_0| < \delta) \implies |f(x) - f(c_0)| < \epsilon.$$

とくに、 $x \in (c_0 - \delta, c_0 + \delta) \cap [a, b]$ なる任意の x に対して、

$$(12.2) f(x) < f(c_0) + \epsilon = \gamma$$

他方で c_0 は S の上限であるから、 $S\cap(c_0-\delta,c_0]$ にはある元 s_0 が存在する。S の定義により、

$$\forall x \in [a, s_0]$$
 に対して $f(x) \leq \gamma$.

このことと (12.2) 式を併せると、 $c_0+\delta/2\in S$ が結論され、これは c_0 の 定義に矛盾する。

以上により、 $f(c_0) = \gamma$.

参考までに定義 12.1 の下の注意で述べた $x(\sin(2\pi x) + 2)$ のグラフを載せておこう。

