next up previous
Next: About this document ...

Zeta functions. No.7

Yoshifumi Tsuchimoto

Congruent zeta as a zeta of a dynamical system.

The definition of Artin Mazur zeta function is valid without assuming the number of the base space $ M$ to be a finite set.

DEFINITION 7.1   Let $ M$ be a set. Let $ f:M\to M$ be a map such that $ \char93 {\mathrm{Fix}}(f^n)$ is finite for any $ n>0$ . We define the Artin-Mazur zeta function of a dynamical system $ (M,f)$ as

$\displaystyle Z((M,f),T)=
\exp(\sum_{j=1}^\infty \frac{\char93  {\mathrm{Fix}}(f^j) T^j}{j})
$

Let % latex2html id marker 642
$ q$ be a power of a prime $ p$ . We may consider an automorphism % latex2html id marker 646
$ {\mathrm{Frob}}_q $ of % latex2html id marker 648
$ \bar{\mathbb{F}_{q}}$ over % latex2html id marker 650
$ \mathbb{F}_q$ by

% latex2html id marker 652
$\displaystyle {\mathrm{Frob}}_q(x)=x^q
$

PROPOSITION 7.2   % latex2html id marker 659
$ {\mathrm{Frob}}_q: \mathbb{F}_{q^r}\to \mathbb{F}_{q^r}$ is an automorphism of order $ r$ . It is a generator of the Galois group % latex2html id marker 663
$ {\mathrm{Gal}}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ .

For any projective variety $ X$ defined over % latex2html id marker 667
$ \mathbb{F}_q$ , we may define a Frobenius action % latex2html id marker 669
$ {\mathrm{Frob}}_q$ on % latex2html id marker 671
$ X(\bar{\mathbb{F}_q})$ :

% latex2html id marker 673
$\displaystyle {\mathrm{Frob}}_q([x_0:x_1:\dots x_N])
=
([x_0^q:x_1^q:\dots x_N^q]).
$

For any % latex2html id marker 675
$ \bar{\mathbb{F}_q}$ -valued point % latex2html id marker 677
$ x \in X(\bar{\mathbb{F}_q})$ , We have

% latex2html id marker 679
$\displaystyle {\mathrm{Frob}}_q^r(x)=x \iff x \in X(\mathbb{F}_{q^r}).
$

PROPOSITION 7.3   The Artin Mazur zeta function of the dynamical system % latex2html id marker 686
$ (X(\bar{\mathbb{F}_q}),{\mathrm{Frob}}_q)$ conincides with the congruent zeta function % latex2html id marker 688
$ Z(X/\mathbb{F}_q,t)$ .


next up previous
Next: About this document ...
2013-06-06