代数学 IB NO.12 要約

一般の環においては、素因数分解の一意性が成り立つとは限らないこと、そのため、 既約元と素元の区別が必要なことを前回説明しました。 既約元と素元の区別が必要なことを前回説明しました。 既約とは、自分自身がこれ以 上非自明な分解をしないことを言い、素元であるとは、それが分解する数の約数なら ば必ず分解された数のいづれかの約数であることを言うのでした。

今日のテーマ 《素元分解環》(2)

今回は前回残した証明の残りを行う。

定義 12.1. 環 R と $a,b \in R$ とにたいして、

- (1) $a \in bR$ のとき、 a は b の倍元であるといい、b|a で書き表す。 b を主語として、b は a の約元であるともいう。
- (2) ある $u \in R^{\times}$ があって、a = bu をみたすとき、 $a \ge b$ とは同伴 であるという。

命題 12.1. 整域 R の元 a,b にたいして、

- (1) $(a) \subset (b) \Leftrightarrow b|a$.
- (2) a と b が同伴 \Leftrightarrow (a) = (b).

定義 12.2. 整域 R が与えられているとする。 $d_0 \in R$ が $a,b \in R$ の最大公約元 (gcd) であるとは

$$\forall d \in R \left(d|d_0 \iff (d|a \ \text{thing} \ d|b) \right)$$

が成り立つときに言う。

補題 12.1. 単項イデアル環 R のイデアルの増大列

$$I_1 \subset I_2 \subset I_3 \subset I_4 \subset \dots$$

は必ずどこかで止まる。すなわちあるNがあって、

$$I_N = I_{N+1} = I_{N+2} = \dots$$

がなりたつ。

上の補題はネータ環の一般論の特殊な場合である。ここで、R がネータ環であるとは、R の任意のイデアルが有限個の元で生成される場合に言う。ネータ環のイデアルの増大列も、必ずどこかで止まることが証明できる。証明はほとんど同じなので進んで勉強したい人はやってみられると良い。(余談ながらネータ環は環論において大変重要な対象である。体上有限生成な環は全てネータ環である。(ヒルベルトの基定理))

命題 12.2. *R* が素元分解環ならば、*R*\{0} の各元は

$$up_1p_2...p_l$$
 $(l \in \mathbb{N}, u \in R^{\times}, p_1, ..., p_l$ は R の素元)

と書くことができるが、この書き方は同伴を除いて一意的である。すなわち、

$$up_1p_2\dots p_l=vq_1q_2\dots q_m$$

 $(l, m \in \mathbb{N}, u, v \in R^{\times}, p_1, \dots, p_l, q_1, \dots, q_m$ は R の素元)

ならば、l=m であって、なおかつある $\sigma \in \mathfrak{S}_l$ があって各 j にたいして p_i と $q_{\sigma(i)}$ はそれぞれ同伴になる。

問題 12.1. 整域 R の元 a,b の最大公約元が2つあったとすれば、それらは互いに同伴であることを証明せよ。