## ZETA FUNCTIONS. NO. 3

## YOSHIFUMI TSUCHIMOTO

In this lecture we define and observe some properties of conguent zeta functions.

### 3.1. Definition of congruent Zeta function.

Definition 3.1. Let $q$ be a power of a prime. Let $V=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a set of polynomial equations in $n$-variables over $\mathbb{F}_{q}$. We denote by $V\left(\mathbb{F}_{q^{s}}\right)$ the set of solutions of $V$ in $\left(\mathbb{F}_{q^{s}}\right)^{n}$. That means,

$$
V\left(\mathbb{F}_{q^{s}}\right)=\left\{x \in\left(\mathbb{F}_{q^{s}}\right)^{n} ; f_{1}(x)=0, f_{2}(x)=0, \ldots, f_{m}(x)=0\right\} .
$$

Then we define

$$
Z\left(V / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{s=1}^{\infty}\left(\frac{1}{s} \# V\left(\mathbb{F}_{q^{s}}\right) T^{s}\right)\right)
$$

Exercise 3.1. Compute congruent zeta function for $V=\{X Y\}$ (an equation on two variables).

Exercise 3.2. Compute congruent zeta function for $V=\left\{X^{2}+\right.$ $\left.Y^{2}-1\right\}$ (an equation on two variables).
3.2. First properties of congruent Zeta function. Let us first recall an elementary formula

Lemma 3.2.

$$
\sum_{k=1}^{\infty} \frac{1}{k} T^{k}=-\log (1-T)
$$

Definition 3.3. We denote by $\mathbb{A}_{n}$ the "void set of equation" in $n$-variables. That means, for any field (or ring) $k$, we put

$$
\mathbb{A}_{n}(k)=\left\{x \in k^{n}\right\} .
$$

## YOSHIFUMI TSUCHIMOTO

## Proposition 3.4.

$$
Z\left(\mathbb{A}_{n} / \mathbb{F}_{q}, T\right)=\frac{1}{1-q^{n} T}
$$

Proposition 3.5. Let $V, W, W_{1}, W_{2}$ be sets of equations.
(1) If $\# V\left(\mathbb{F}_{q^{s}}\right)=\# W\left(\mathbb{F}_{q^{s}}\right)$ for any s , then $Z\left(V / \mathbb{F}_{q}, T\right)=Z\left(W / \mathbb{F}_{q}, T\right)$.
(2) If $\# V\left(\mathbb{F}_{q^{s}}\right)=\# W_{1}\left(\mathbb{F}_{q^{s}}\right)+\# W_{2}\left(\mathbb{F}_{q^{s}}\right)$ for any $s$, then:

$$
Z\left(V / \mathbb{F}_{q}, T\right)=Z\left(W_{1} / \mathbb{F}_{q}, T\right) Z\left(W_{2} / \mathbb{F}_{q}, T\right)
$$

Proposition 3.6. Let $f \in \mathbb{F}_{q}[X]$ be an irreducible polynomial in one variable of degree $d$. Let us consider $V=\{f\}$, an equation in one variable. Then:
(1)

$$
V\left(\mathbb{F}_{q^{s}}\right)= \begin{cases}d & \text { if } d \mid s \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{equation*}
Z\left(V / \mathbb{F}_{q}, T\right)=\frac{1}{1-T^{d}} \tag{2}
\end{equation*}
$$

Exercise 3.3. Describe what happens when we omit the assumption of $f$ being irreducible in Proposition 3.6.

