next up previous
Next: The ring of -adic Up: , , and the Previous: Playing with idempotents in

The ring of $ p$ -adic Witt vectors (when the characterisic of $ A$ is $ p$ )

Before proceeding further, let me illustrate the idea. Proposition 9.5 tells us an existence of a set $ \{e_n; n \in \mathbb{Z}_{>0}, p \nmid n \}$ of idempotents in $ \mathcal W_1(A)$ such that its order structure is somewhat like the one found on the set $ \{ n \mathbb{N}; n \in \mathbb{Z}_{>0}, p \nmid n\}$ . Knowing that the idempotents correspond to decompositons of $ \mathcal W_1(A)$ , we may ask:

PROBLEM 9.8   What is the partition of $ {\mathbb{Z}_{>0}}$ generated by the subsets $ \{n \mathbb{N}; n \in \mathbb{Z}_{>0}\}$ ?

To answer this problem, it would probably be better to find out what the set

$\displaystyle S_{n;p}=n \mathbb{N}\setminus \bigcup_{\substack{n\vert m\\ n<m \\ p \mid m }} m \mathbb{N})
$

should be. The answer is given by a fact which we know very well: every positive integer may uniquely be written as

% latex2html id marker 1572
$\displaystyle p^s n \quad ( s \in \mathbb{Z}_{\geq 0}, \quad n \in \mathbb{Z}_{>0}, \quad
\gcd(p,n)=1),
$

Knowing that, we see that the set $ S_{n;p}$ as above is equal to

% latex2html id marker 1576
$\displaystyle \{ p^s n ; s\in \mathbb{Z}_{\geq 0} \}.
$

The answer to the problem is now given as follows:

% latex2html id marker 1578
$\displaystyle \mathbb{Z}_{>0} = \coprod_{p\nmid n}
\{ p^s n ; s\in \mathbb{Z}_{\geq 0} \}.
$

The same story applies to the ring $ \mathcal W_1(A)$ of universal Witt vectors for a ring $ A$ of characteristic $ p$ . We should have a direct product expansion

$\displaystyle \mathcal W_1(A)=\prod_{p \nmid n} e_{n;p} \mathcal W_1(A)
$

where the idempotent $ e_{n;p}$ is defined by

$\displaystyle e_{n;p}= e_n - \bigwedge_{\substack{n\vert m \\ n<m \\ p \nmid m }} e_m
$

Of course we need to consider infimum of ininite idempotents. We leave it to an excercise:

EXERCISE 9.1   Show that the infinite product

$\displaystyle \bigwedge_{\substack{n\vert m \\ n<m \\ p \nmid m }} e_m
=\prod_{\substack{n\vert m \\ n<m \\ p \nmid m }} e_m
$

converges.

PROPOSITION 9.9   Let $ p$ be a prime. Let $ A$ be an integral domain of characteristic $ p$ . Let us define an idempotent $ f$ of $ \mathcal W_1(A)$ as follows.

$\displaystyle f=
\bigvee
_{\substack{
n>1\\
p \nmid n
}}
e_n
(=[1]-
\prod_
{\substack
{p \nmid n\\
n>1
}}
([1]- e_n))
$

Then $ f$ defines a direct product decomposition

$\displaystyle \mathcal W_1(A)
\cong
\left (
f \cdot \mathcal W_1(A)
\right )
\times
\left(
([1]- f)\cdot \mathcal W_1(A)
\right).
$

We call the factor algebra $ ([1] - f)\cdot \mathcal W_1(A)$ the ring $ \mathcal W^{(p)}(A)$ of $ p$ -adic Witt vectors.

The following proposition tells us the importance of the ring of $ p$ -adic Witt vectors.

PROPOSITION 9.10   Let $ p$ be a prime. Let $ A$ be a commutative ring of characteristic $ p$ . For each positive integer $ k$ which is not divisible by $ p$ , let us define an idempotent $ f_k$ of $ \mathcal W_1(A)$ as follows.

$\displaystyle f_k=\bigvee_{
\substack{p\nmid n \ n >1}} e_{k n }
(=e_k - \prod
_{\substack{p\nmid n \ n >1}}
(e_k - e_{k n}))
$

Then $ f_k$ defines a direct product decomposition

$\displaystyle e_k\mathcal W_1(A)
\cong
\left (
f_k \cdot \mathcal W_1(A)
\right )
\times
\left(
(e_k- f_k) \cdot \mathcal W_1(A)
\right).
$

Furthermore, the factor algebra $ (e_k- f_k)\cdot \mathcal W_1(A)$ is isomorphic to the ring $ \mathcal W^{(p)}(A)$ of $ p$ -adic Witt vectors. Thus we have a direct product decomposition

$\displaystyle \mathcal W_1(A) \cong \mathcal W^{(p)}(A)^{\mathbb{N}}.
$


next up previous
Next: The ring of -adic Up: , , and the Previous: Playing with idempotents in
docky 2016-06-18