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4.1. ring homomorphism and spectrum.

Lemma 4.1. Let A,B be two ring homomorphisms. Let

α : A → B

be a ring homomorphism (which we always assume to be unital).
Then we have a associate map

Spec(α) : Spec(B) → Spec(A)

defined by

Spec(α)(p) = α−1(p) (∀p ∈ Spec(B)).

The map Spec(α) has the following properties.

(1)

Spec(α)(p) = {f ∈ A; ρp(α(f)) = 0}
(2)

Spec(α)−1(Of ) = Oα(f)

for any f ∈ A.
(3) Spec(α) is continuous.

4.2. localization of a commutative ring. .

Definition 4.2. Let f be an element of a commutative ring A. Then
we define the localization Af of A with respect to f as a ring defined
by

Af = A[X]/(Xf − 1)

where X is a indeterminate.

In the ring Af , the residue class ofX plays the role of the inverse of f .
Therefore, we may write A[1/f ] instead of Af if there is no confusion.

One may define localization in much more general situation. The
reader is advised to read standard books on commutative algebras.

Lemma 4.3. Let f be an element of a commutative ring A. Then
there is a canonically defined homeomorphism between Of and Spec(Af ).
(It is usual to identify these two via this homeomorphism.)

Proof. Let if : A → Af be the natural homomorphism. We have
already seen that we have a continuous map

Spec(if ) : Spec(Af ) → Spec(A).

We need to show that it is injective, and that it gives a homeomorphism
between Spec(Af ) and Of .

Let us do this by considering representations.

(1) p ∈ Spec(A) corresponds to a representation ρp.
(2) q ∈ Spec(Af ) corresponds to a representation ρq.
(3) Spec(if ) corresponds to a restriction map ρ 7→ ρ ◦ if .
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Now, for any p ∈ Spec(A), ρp extends to Af if and only if the image
ρp(f) of f is invertible, that means, ρp(f) ̸= 0. In such a case, the
extension is unique. (We recall the fact that the inverse of an element
of a field is unique.)

It is easy to prove that Spec(if ) is a homeomorphism. □
Let A be a ring. Let f ∈ A. It is important to note that each element

of Af is written as a “fraction”
x

fk
(x ∈ A; k ∈ N).

One may introduce Af as a set of such formal fractions which satisfy
ordinary computation rules. In precise, we have the following Lemma.

Lemma 4.4. Let A be a ring, f be its element. Let us consider the
following set

S = {(x, fk); x ∈ A; k ∈ N}.
We introduce on S the following equivalence law.

(x, fk) ∼ (y, f l) ⇐⇒ (yfk − xf l)fN = 0 (∃N ∈ N)
Then we may obtain a ring structure on S/ ∼ by introducing the fol-
lowing sum and product.

(x/fk) + (y/f l) = (xf l + yfk/fk+l)

(x/fk)(y/f l) = (xy/fk+l)

where we have denoted by (x/fk) the equivalence class of (x, fk) ∈ S.

Corollary 4.5. Let A be a ring, f be its element. Then we have
Af = 0 if and only if f is nilpotent.

Likewise, for any A-module M , we may define Mf as a set of formal
fractions

m

fk
(m ∈ M ; k ∈ N).

which satisfy certain computation rules.

4.2.1. Existence of a point.

Lemma 4.6. Let A be a ring. If A ̸= 0 (which is equivalent to saying
that 1A ̸= 0A), then we have Spec(A) ̸= ∅.

Proof. Assume A ̸= 0. Then by Zorn’s lemma we always have a
maximal ideal m of A. A maximal ideal is a prime ideal of A and is
therefore an element of Spec(A). □

Lemma 4.7. Let A be a ring, f be its element. We have Of = ∅ if
and only if f is nilpotent.

Proof. We have already seen that Af = 0 if and only if f is nilpo-
tent. (Corollary 4.5). Since Of is homeomorphic to Spec(Af ), we have
the desired result. □


