NON-COMMUTAVIE PROJECTIVE SPACE AS A NON-COMMUTATIVE KÄHLER MANIFOLD

目次

1. 問題の説明	1
1.10. プラン	1
1.12. 根本問題	2
1.13. Marsden-Weinstein quotient	3
1.14. 選択 1: 微分	5
1.15. 選択 2: moment map	6
2. 可換理論による構成	8
2.20. 斉次 Weyl-Clifford 代数	8
$2.21.$ $\mathbb{P}^n \times \mathbb{P}^n$ での層 WC の定義	8
2.22. WC の構造	9
2.25. ステレオ作用、ステレオ加群	10
3. 正標数と標数 0	10
3.30. Ultrafilter による標数 0 への移行	10
3.34. U-解析学	11
3.36.	13
3.37. 基本写像	13
3.38. いくつかの集合の定義	13
3.39. 集合たちの関係と元の個数	14
3.40. 基本写像のファイバー	14
3.41. 基本写像から得られる等式	15
4. C の消去:無限小の場合	15
4.40. 無限小の場合の整理	15
4.42. Bの構造	16
4.43. C の消去	18
4.45. $\bar{\partial}$ -cohomology (無限小版)	19
4.46. 有限の場合の整理	20
5. C の消去:有限の場合	21
5.50. 有限の場合の整理	21
5.52. 3 の構造	22
5.53. C の消去	24
5.55. $\bar{\partial}$ -cohomology (有限版)	25
6. ホモロジー代数的な商 (higher geometry)	26
6.60. 小まとめ	26
10. 公式	27
10.100. 公式 (無限小の場合)	27
10.101. 特別な元	27
10.110. 公式 (有限の場合)	28

1. 問題の説明

1.10. プラン.

Date: 2017年12月19日.

- (1) \mathbb{Z} 上、 $\mathbb{P}^n \times \mathbb{P}^n$ の射影座標環からはじめて Marsden-Weinstein 商をとることにより 非可換の次数付き環 A を得る。
- (2) 標数 0 の体上で考えるならば、A の Proj は空である。
- (3) 標数 p > 0 ならば、 Proj は $\mathbb{P}^n \times \mathbb{P}^n$ であり、A は $\mathbb{P}^n \times \mathbb{P}^n$ 上 \mathcal{O} sheaf of algebras とみなせる。
- (4) コホモロジーは $\mathbb{P}^n \times \mathbb{P}^n$ 上の可換理論における普通のコホモロジーとして計算できる。
- (5) 制約 ($\mathbb{P}^n \times \mathbb{P}^n$ の subvariety) を考えると話が変わる。
 - (a) (I^p, \bar{I}^p) を定義イデアルとして non-commutative なものを 割る。
 - (b) これについてはあとで深く考える必要がある。
 - (c) $X \times Y \subset \mathbb{P}^n \times \mathbb{P}^n$ みたいのも考えられるかも。
 - (d) どう進むのか。
 - (e) そもそも意味があるのか。

合理性の検討

- (1) $\mathbb{P}^n \times \mathbb{P}^n$ を $\mathbb{A}^{n+1} \times \mathbb{A}^{n+1}$ の非可換化の Marsden Weinstein quotient として作る。 $\mathbb{G}_m \times \mathbb{G}_m$ による商による実現として自然。
- (2) $\mathbb{A}^{n+1} \times \mathbb{A}^{n+1}$ の非可換化としては, 正準交換関係を用いる。-歴 史的、常識的に見て自然。
- (3) 微分作用素として実現し、影をとる。-微分作用素の環をモデル にとる限り projective/proper なものはできない。
- (4) とくに O(1) 上の微分作用素を考える。— 正当性:Fubini-Study metric を生み出す。
- (5) super 変数を考える-(非可換) 微分作用素の構成、Fermion の 存在。

問題と期待される解答

- (1) ここで作った 非可換 $\mathbb{P}^n \times \mathbb{P}^n$ は妥当なものであることを示せ。 影は $\mathbb{P}^n \times \mathbb{P}^n$. (check 済).
- (2) 非可換 $\mathbb{P}^n \times \mathbb{P}^n$ のコホモロジーは? -基本的に可換なものと同じであってほしい。
- (3) 非可換代数多様体を一般的に定義せよ。 $-(I^p, \bar{I}^p)$ で定義したものであってほしい。ただしその妥当性はさらに論を待たねばならない。
- (4) 非可換な方向への変形理論とモジュライ理論の確立。
- 1.12. **根本問題.** \mathbb{k}_1 を可換環, $h \in \mathbb{k}_1$ とする。

非斉次 Weyl 環 weyl $_{n+1} = \mathbb{k}\langle x_0, \dots x_n, \bar{x}_0, \dots \bar{x}_n \rangle / (\operatorname{ccr})$ (ただし、ccr は交換関係 $[\bar{x}_i, x_j] = h\delta_{ij}$, $[x_i, x_j] = 0$, $[\bar{x}_i, \bar{x}_j] = 0$) から始める。 weyl $_{n+1}$ の signed degree が 0 のところをとってくる

 $\operatorname{weyl}_{(0)} = \mathbb{k} \langle x_0, \dots x_n, \bar{x}_0, \dots \bar{x}_n \rangle_{(0)} = \mathbb{k} \langle \{x_i \bar{x}_j; i, j \in \{0, 1, 2, \dots, n\}\} \rangle.$

ただし、signed degree sdeg は以下で決まる。

変数:
$$x$$
 \bar{x} sdeg: 1 -1

つぎに、「moment map が 0 のところ」すなわち $\sum_i x_i \bar{x}_i = R$ のところに切る。

$$A = \operatorname{weyl}_{(0)} / (\sum_{i} x_i \bar{x}_i - R)$$

 \mathbb{k}_1 の標数 が p > 0 のとき、A の中心は

$$\mathbb{k}[\{x_i^p \bar{x}_i^p; i, j = 0, \dots, n\}]/(\text{relation})$$

と等しく、その関係式 (relation) は

$$\sum_{i} x_{i}^{p} \bar{x}_{i}^{p} = R^{p} (1 - h^{p-1})$$

で与えられる。

事実 1.12.1. $A = \text{weyl}_{(0)} / (\sum_i x_i \bar{x}_i - R)$ は、 $\mathbb{P}^n \times \mathbb{P}^n$ 上の affine 開集合

$$\{[a_0: a_1: \dots a_n], [\bar{a}_0: \bar{a}_1: \dots \bar{a}_n]; \sum_i a_i \bar{a}_i \neq 0\}$$

上の coherent sheaf of algebras A と対応し、A の各閉点でのファイバーは は全行列環 M_{p^n} と同型である。

根本問題

事実 1.12.1 を参考にして $\mathrm{Res}_{\mathbb{C}/\mathbb{R}}\,\mathbb{P}^n\cong\mathbb{P}^n\times\mathbb{P}^n$ の非可換化を構成 せよ。とくに、

- 非斉次ワイル環の Spec の「完備化」に留意すること。
- 超変数を用いた「微分形式の非可換版」をきちんと作ること。

Silly computation

「完備化」でこれからやろうとしていることを可換の場合に見てみよう。多項式環 $B=\Bbbk[X_0,\ldots X_n,\bar{X}_0,\ldots \bar{X}_n]$

からはじめて、その signed degree が 0 のところをとってくる

$$B_{(0)} = \mathbb{k}\langle X_0, \dots X_n, \bar{X}_0, \dots \bar{X}_n \rangle_{(0)} = \mathbb{k}[\{X_i \bar{X}_j; i, j \in \{0, 1, 2, \dots, n\}\}].$$

これは $\mathbb{P}^n \times \mathbb{P}^n$ の Segré embedding の像の射影座標環 (あ) である。もう少し詳しく言えば、 $(n+1)^2$ 個のあたらしい変数 $\{X_{i,\bar{j}}; 0 \leq i,j \leq n\}$ を用意して、

$$B_{(0)} = \mathbb{k}[\{X_i \bar{X}_j; i, j \in \{0, 1, 2, \dots, n\}\}) \ni X_i \bar{X}_j \mapsto X_{i\bar{j}} \in \mathbb{k}[\{X_{i\bar{j}}\}]$$

を考えると、これに対応する Proj が Segré embeddingg を与えるのであった。

つぎに、「moment map が 0 のところ」すなわち $\sum_i X_i \bar{X}_i = 1$ のところに切るわけだが、 $\sum_i X_i \bar{X}_i$ (Segré embedding で $\sum_i X_{i,\bar{i}}$ に対応する) 自体も (あ) の線形な座標の一つであるから、 $\sum_i X_i \bar{X}_i = 1$ は一つの affine piece を取り出していることと同じである。そこで、新しい余分な変数 C をとって、改めて $\operatorname{Proj}(A_{(0)}[C]/(\sum_i X_i \bar{X}_i = C)$ を考えれば、これはもちろん $\mathbb{P}^n \times \mathbb{P}^n$ に戻るというわけである。

1.13. **Marsden-Weinstein quotient.** "Marsden-Weinstein quotient" という言葉自体はシンプレクティック幾何学から借りている。その概要については wikipedia の記事

(https://en.wikipedia.org/wiki/Moment_map) を見ると良い。nlab の記事

https://ncatlab.org/nlab/show/BV-BRST+formalism

の Poisson reduction のところも良い。

環 W に対して、その部分集合 S で W (というか $\operatorname{Spec}(W)$) を「制限」したい。W が可換の場合であれば、これは S で生成される W のイデアル $W \cdot S$ でもって剰余環 $W/W \cdot S$ を考えることに該当する。

W が非可換な場合にも、S で生成されるイデアルを考えることはもちろん可能ではあるが、我々のワイル環のようにW が単純環の場合な

どもあり、必ずしも有効であるとは限らない。不確定性原理により二つの変数を同時に正確に定めることは一般には不可能なのだ。

そこで、S で生成される左イデアル $J=W\cdot S$ を 考えて、W における J の idealizer $\mathbb{I}_W(J)=\{a\in W; Ja\subset J\}$ を考える。 $\mathbb{I}_W(J)$ は W の元のうち S=0 という制限と「協調的」な元であると考えて良いだろう。そこで $\mathbb{I}_W(J)/J$ を W の S による制限として据えるのである。 環 W に 代数群 G が作用していたとする。実は W の G での商 (Marsden-Weinstein 商と呼ばれる) は上のような「制限」の考え方で得られる、別の言い方をすると Marsden-Weinstein 商 は W は moment map μ による W の「制限」と見ることができることを以下に示そう。 Spec(W) の G での商空間は W の G-不変環に対応する:

$$\operatorname{Spec}(W)/G$$
 "=" $\operatorname{Spec}(W^G)$

… と行きたいところである。が、いくつかの座標の固定を放棄した (G-軌道のどこにあるかを決めるのをやめる) かわりに、決定できる元 ("運動量") がある。別の言い方をすれば、 $\mu \in W^G$ があって、真にほしいものは

$$\operatorname{Spec}(W)//G = \mu^{-1}(0) \subset \operatorname{Spec}(W^G)$$

である。(ここでは μ は一個のように書いているが複数でもよい。つまり、 $\mu = (\mu_1, \mu_2, \dots, \mu_k) \in W^k$) いくつかの良い条件のもとで、

$$W^G = \mathbb{I}_W(J), \quad J = W \cdot (\mu_1, \mu_2, \dots, \mu_k)$$

である。

- まとめ

- 群の非可換環への作用 から moment map が定まる。
- moment map での「制限」により非可換環の spec の商空間が与えられる。

シンプレクティックの場合に関する補足。

複素ケーラー多様体 X と 実 Lie 群 G の X へのケーラー形式を保 つ作用について、

$$X/G_{\mathbb{C}} \cong X//G$$
 $(G_{\mathbb{C}}: G$ の複素化).

とくに、

$$\mathbb{P}^n(\mathbb{C}) \cong \mathbb{A}^{n+1}_{\mathbb{C}}/\mathbb{G}_m \cong \mathbb{A}^{n+1}//S^1 = \mu^{-1}(0)/S^1$$

我々はこの話を「非可換版」にし、なおかつ「超変数を付け加える」つもりである。 moment map をどう選ぶかというのは S^1 の作用 (もともとの環 W の \mathbb{Z} -grading) をどうとるかに相当し、それは超変数の話を抜きにすれば上記 \mathbb{P}^n の話と一致すべきであろうから、

(1) $\sum_{i} X_{i} \bar{X}_{i}$. 対応する次数付けは、

$$\begin{array}{c|cccc} x_i & \bar{x}_i & e_i & \bar{e}_i \\ \hline 1 & -1 & 0 & 0 \end{array}$$

(2) $k\sum_{i}X_{i}\bar{X}_{i}+\sum_{i}E_{i}\bar{E}_{i}$. 対応する次数付けは、

のいずれかといったところだろう。以下の No.015 で検討する。

1.14. **選択 1: 微分.** 微分形式の理論を考えるにあたって、微分形式の微分をどう扱うかは基本的である。ここでは ∂ , $\bar{\partial}$ の 2 つの微分を導入したい。まず \mathbb{A}^{n+1} の「座標環」に「form を付け加えた」環 S (仮名)を作りたい。

 \mathbb{k}_1 を可換環, $h \in \mathbb{k}_1$ とする。

(仮説 0.) S は \mathbb{k}_1 上の super 代数である。余談であるが S の元については super 代数の標準的な記法をもちいる。例えば $[\bullet, \bullet]$ は交換子ではなく super 交換子であり、 $\hat{\bullet}$ のように hat は \bullet の parity を表す。

(仮説 1.) 変数 $x_0, \ldots, x_n, \bar{x}_0, \ldots, \bar{x}_n$ は (非斉次) 正準交換関係 (ccr) を満たす。つまり、非斉次 Weyl 環 $\operatorname{weyl}_{n+1} = \mathbb{k}\langle x_0, \ldots x_n, \bar{x}_0, \ldots \bar{x}_n \rangle / (\operatorname{ccr})$ から始める。我々の扱いたい環 S は $\operatorname{weyl}_{n+1}$ の拡大環である。

(仮説 2.) S は **2 つの odd 微分** ∂ , $\bar{\partial}$ **の作用を受ける**。すなわち、 ∂ , $\bar{\partial}$ はともに S から S への \mathbb{k}_1 -線形写像であり、(super) Leibnitz 則

$$\partial(ab) = \partial(a)b + (-1)^{\hat{b}}a\partial b$$
$$\bar{\partial}(ab) = \bar{\partial}(a)b + (-1)^{\hat{b}}a\bar{\partial}b$$

を満たす。 $(\hat{b} \ b \ \mathcal{O} \ parity.)$

(仮説 3.) $\partial x_0, \ldots \partial x_n$ のことを $e_0, \ldots, e_n, \bar{\partial} x_0, \ldots \bar{\partial} x_n$ のことを $\bar{e}_0, \ldots, \bar{e}_n$ と書く。 $e_0, \ldots, e_n, \bar{e}_0, \ldots, \bar{e}_n$ は (acr) を満たす。

$$[e_i, \bar{e}_j]_+ = k_1 \delta_{ij}, \quad [e_i, e_j]_+ = 0, \quad [e_i, \bar{e}_j]_+ = 0,$$

(さらに、標数 2 の場合には $e_i^2=0, \bar{e}_i^2=0$ を仮定する。)

(仮説 4.) (コーシー・リーマン) $\bar{\partial}x_i = 0, \partial \bar{x}_i = 0 \ (i = 0, 1, 2, \dots, n).$

(仮説 5.) e_i と x_j とはおのおの可換である。同様に \bar{e}_i と \bar{x}_j ともおのおの可換である。

('bar 無し' だけの世界、'bar 付き' だけの世界はそれぞれ可換の多項式環上の通常の微分形式の世界である。)

(帰結 6.) x_i と \bar{e}_i とは可換である。これは (ccr) を ∂ や $\bar{\partial}$ で作用させてみればわかる。

$$0 = \partial(h\delta_{ij}) = \partial[x_i, \bar{x}_j] = [e_i, \bar{x}_j]$$

等々。

(帰結 7.) 任意のi,jにたいして、

$$0 = \partial[x_i, \bar{e}_j] = [e_i, \bar{e}_j] + [x_i, \partial \bar{e}_j].$$

ゆえに、

$$[x_i, \partial \bar{e}_j] = -\delta_{ij} k_1$$

とくに、 $\partial \bar{e}_j (= \partial \bar{\partial} x_j) \neq 0$.

(仮説 8.) ある k が存在して、 $k_1 = hk$, $\partial \bar{\partial} \bar{x}_i = k\bar{x}_i$ ($\forall i$).

(帰結 8.) ∂ , $\bar{\partial}$ は「定数倍を除けば inner」 である。

$$\partial = \frac{1}{h} \operatorname{ad}(\sum_{i} \bar{x}_{i} e_{i}), \quad \bar{\partial} = -\frac{1}{h} \operatorname{ad}(\sum_{i} x_{i} \bar{e}_{i})$$

(帰結 9.)

$$[\bar{\partial}, \partial] = \frac{1}{h^2} \operatorname{ad}([\sum_i \bar{x}_i e_i, \sum_j x_j \bar{e}_j)) = \frac{1}{h} \operatorname{ad}(\partial(\sum_j x_j \bar{e}_j)) = \frac{1}{h} \operatorname{ad}(k \sum_j x_j \bar{x}_j + \sum_j e_j \bar{e}_j)$$

ここでの結論・

 \mathbb{A}^{n+1} 上の微分形式全体の空間の非可換対応物として、非斉次 Weyl 環と非斉次 Clifford 環のテンソル積

$$S = \mathbb{k}_1 \langle x_0, \dots, x_n, \bar{x}_0, \dots, \bar{x}_n, e_0, \dots, e_n, \bar{e}_0, \dots, \bar{e}_n \rangle / (\operatorname{ccr}, \operatorname{acr})$$

をとり、S の微分としては

$$\partial = \frac{1}{h} \operatorname{ad}(\sum_{i} \bar{x}_{i} e_{i}), \qquad \bar{\partial} = -\frac{1}{h} \operatorname{ad}(\sum_{i} x_{i} \bar{e}_{i})$$

を採用する。

(注意)

$$\sum_{i} \bar{x}_{i} e_{i} = \partial(\sum_{i} x_{i} \bar{x}_{i}), \qquad \sum_{i} x_{i} \bar{e}_{i} = \bar{\partial}(\sum_{i} x_{i} \bar{x}_{i}),$$

(補足)

(仮説 8) はまだ唐突に過ぎたかもしれない。実際には、次のような仮説 (8a-c) を立ててそこから (仮説 8) を導くべきだろう:

(仮説 8a) $\partial^2 = 0$, $\bar{\partial}^2 = 0$.

(仮説 8b) ∂ , $\bar{\partial}$ は「変数ごとに」考えてよい。つまり、もともと n-変数 Weyl-Clifford 代数は 1 変数のもののテンソル積であるが、 ∂ , $\bar{\partial}$ はそれぞれの 1 変数 Weyl Clifford 代数ごとに定義されていて、そのテンソル積として表される。

(仮説 8c) (1)-(7) と (8a,8b) から $\partial \bar{e} = \bar{x} + \text{const.}$ のかたちが得られるが、x 変数の平行移動により原点を調整して、constant の部分は 0 と考える。この (8c) は定数の数を増やすのを防ぐための便宜上の工夫と言ったほうが良いかもしれないが、このために constant の部分に現れうる元を限定しすぎている可能性もある。

1.15. **選択 2: moment map.** \mathbb{A}^{n+1} の「form の代数」S が確定した後、今度はそれを「moment map で切らなければ」ならない。幾何学的には、 $\mathbb{A}^{n+1}(\mathbb{C})$ の submanifold である球面 (S^{2n+1}) を S^1 で割ることに対応する。

この回は moment map としては何をとるべきか議論する。

考え方としては、super な変数を導入する前と同じものを採用して、

$$\mu_{(\mathfrak{Z})} = \sum_{i} x_i \bar{x}_i - R$$

が妥当だと思わえるかもしれない。R は定数 (\mathbb{k}_1 の元) で、 $\mathrm{ad}(\mu_{(b)})$ は定数倍を除いて次のような S の次数付けに対応する。

$$\begin{array}{ccccc} x_i & \bar{x}_i & e_i & \bar{e}_i \\ 1 & -1 & 0 & 0 \end{array}$$

(あ) による Marsden-Weinstein quotient とは、この degree に関して次数が 0 の S の元の全体を、 $\mu_{(b)}=0$ という関係式で割った剰余環である。

しかし (あ) を採用するのは我々にとってはさほど嬉しくない。我々の環 A には、 $\partial,\bar{\partial}$ の作用が 許容されなければならない。(あ) を認めると、A では $\sum_i x_i \bar{x}_i = R$ が成り立つはずであるから、両辺を ∂ や $\bar{\partial}$ で微分することにより、

$$\sum_{i} x_i \bar{e}_i = 0, \qquad \sum_{i} \bar{x}_i e_i = 0$$

を得る。それらによる adjoint をとることにより、任意の $x \in A$ に対して $\partial x = 0$, $\bar{\partial} x = 0$ が成り立つことになり、面白い議論が期待できない。

いまのところ、(あ) の代わりに

$$\mu_{(\mathsf{V})} = k \sum_{i} x_i \bar{x}_i + \sum_{i} e_i \bar{e}_i = \tilde{R}$$

が適当だと思われる。 $\operatorname{ad}(k\sum_i x_i \bar{x}_i + \sum_i e_i \bar{e}_i - \tilde{R})$ は定数倍を除いて次のような S の次数付けに対応する。

 $\mu_{(\nu)}$ は ∂ -closed かつ $\bar{\partial}$ -closed であるから $\mu_{(\nu)}$ に関する剰余環には (あ) に見られたような不具合はない。さらに、 $[\partial,\bar{\partial}]=\frac{1}{\hbar}\operatorname{ad}(\mu_{(\nu)})$ であるから、S の $\mu_{(\nu)}$ による Marsden-Weinstein quotient では ∂ と $\bar{\partial}$ は可換である。大変都合がいい。

今回の結論 -

moment map としては

$$k\sum_{i} x_i \bar{x}_i + e_i \bar{e}_i - R$$

を採用する。

以下の部分は早まった。(\tilde{R} を改めて R と書いたのが混乱の元だった。) 間違いだとわかっているのに書いてしまったり、そのまま説明してしまうのは私の悪いところである。

-なお、(R=0 という考えたくないケースを除いて) h をうまく調節してスケールを考えることにより、 R=1 としてよいので、以下ではそうする。

実際に書きたかったのは次のようなことである。:

コホモロジーの議論は k=0 以外では面白くなさそうなので、 $\mathbb{k}_1[[k]]$ のような環を係数環に据え、k に関する order を考えて $R=k^\rho$ のような形に限定して議論をすることを目論んでいる。

2. 可換理論による構成

2.20. **斉次 Weyl-Clifford 代数.**

2.20.1. 基礎体 \mathbb{k} , 基礎環 \mathbb{k}_1 , \mathbb{k}_2 , \mathbb{k}_3 . 基礎体 \mathbb{k} とその拡大可換環 \mathbb{k}_2 を 固定する。特別の元 $h,k\in\mathbb{k}_2$. を選んでおき、 $\mathbb{k}_1=\mathbb{k}[h],\mathbb{k}_2=\mathbb{k}[h,k]$ とおく。h を 0 に特殊化することにより、「可換の場合」にすぐ帰着できるようにしているのである。後のセクションでは、 \mathbb{k} は標数 $p\neq 0$ の体で、 \mathbb{k}_1 は 環 $\mathbb{k}[h,\frac{1}{1-hp-1}]$ を採用することが多いだろう。

さらに、悪ノリの部類に属するかもしれないが、あとあと C が登場の後は $\mathbb{k}_3 = \mathbb{k}_2[C]$ と定義する。

2.20.2. 斉次 Weyl-Clifford 代数の定義.

定義 2.20.1. 斉次 Weyl 代数を次のように定める。

$$\operatorname{Weyl}_{n+1}^{(h,C)} = \mathbb{k}_1 \langle C, X_0, X_1, \dots, X_n, \bar{X}_0, \bar{X}_1, \dots, \bar{X}_n \rangle$$

ただし X_i, \bar{X}_j はつぎの正準交換関係 (canonical commutation relations, CCR) を満たす:

$$[\bar{X}_i, X_j] = hC\delta_{ij}$$
 (Kronecker's delta),
 $[\bar{X}_i, \bar{X}_i] = 0$, $[X_i, X_j] = 0$. $(i, j = 0, 1, 2, \dots, n)$.

C は中心的元である。

上のように、「 \Bbbk 上環として X_1, X_2, \ldots で生成される環」という記号を本稿では $\Bbbk\langle X_1, X_2, \ldots \rangle$ とかく。

定義 2.20.2. 斉次 Clifford 代数とは次の代数である。

$$\operatorname{Cliff}_{n+1}^{(h,C,k)} = \mathbb{k}_1 \langle C, k, E_0, \dots, E_n, \bar{E}_0, \dots, \bar{E}_n \rangle$$

ただし E, \bar{E} たちはつぎの正準反交換関係 (CAR) を満たす:

$$[\bar{E}_i, E_j]_+ = Chk\delta_{ij}$$

 $[\bar{E}_i, \bar{E}_j]_+ = 0, \quad [E_i, E_j]_+ = 0$

ここで, C, k は中心的な元である。.

定義 2.20.3. 非負整数 n, m にたいし、斉次 Weyl-Clifford 代数を次のテンソル積で定義する。

$$\mathrm{WC}_{n+1,m+1}^{(h,C,k)} = \mathrm{Weyl}_{n+1}^{(h,C)} \otimes_{\Bbbk_3} \mathrm{Cliff}_{m+1}^{(h,C,k)}.$$

(ただし、少し上に予告したように、 $\mathbb{k}_3=\mathbb{k}_2[C]$ と定義する。) n=m の ときは簡単のため $\mathrm{WC}_{n+1}^{(h,C,k)}=\mathrm{WC}_{n+1,n+1}^{(h,C,k)}$ と書くことにする。

2.21. $\mathbb{P}^n \times \mathbb{P}^n$ での層 WC の定義. $\mathbb{P}^n \times \mathbb{P}^n$ 上の加群の層 WC を定義する。

2.21.1. ステレオ作用、ステレオ加群.。

斉次 Weyl-Clifford 環 WC $_{n+1}$ に、左から無印の多項式環 $\mathbb{k}_2[X_0,X_1,\ldots,X_n]$ の元、右から bar 付きの多項式環 $\mathbb{k}_2[\bar{X}_0,\bar{X}_1,\ldots,\bar{X}_n]$ の元を作用させることを考える。この作用をここでは「ステレオ作用」と呼ぶことにする。 WC $_{n+1}$ はステレオ作用により (2n+1) 変数多項式環 $\mathbb{k}_2[X_0,X_1,\ldots,X_n,\bar{X}_0,\bar{X}_1,\ldots\bar{X}_n]$ 上の (通常の可換環論的な意味での) 二重次数付き加群と見ることができる。したがってそれは $\mathbb{A}^{n+1}\times\bar{\mathbb{A}}^{n+1}$ 上の加群の層、敷いては (ここから $\mathbb{G}_m\times\mathbb{G}_m$ -作用で割って) $\mathbb{P}^n\times\mathbb{P}^n$ 上の層を与える。これを WC と書く。

WC の構造の導入のしかたにより、WC は $\mathbb{P}^n \times \mathbb{P}^n$ 上の層としては環の構造を持つとは言えないが、 $\operatorname{char}(\mathbb{k}) > 0$ のときには可換理論の枠内で WC の環構造を理解することができる。包含写像 $\mathbb{k}_2[X_0^p,\dots,X_n^p,\bar{X}_0^p,\dots,\bar{X}_n^p] \subset \mathbb{k}_2[X_0,\dots,X_n,\bar{X}_0,\dots,\bar{X}_n]$ に対応する射影空間の射は同相であるから、それによって $\mathbb{k}_2[X_0^p,\dots,X_n^p,\bar{X}_0^p,\dots,\bar{X}_n^p]$ に対応する層を $\mathbb{O}_{\mathbb{P}^n}$ の部分環の層とみなして、 $\mathbb{O}^{(p)}$ と書くことにする。言い換えると $\mathbb{O}^{(p)}$ は relative Frobenius morphism による構造層の direct image である。

 $\mathbb{k}_2[X_0^p,\ldots,X_n^p,\bar{X}_0^p,\ldots,\bar{X}_n^p]$ は WC の中心に含まれるから、 $\mathbb{O}^{(p)}$ -上であれば、WC は環 (正確には、多元環) の構造を持つ。

2.22. WC **の構造.**

2.22.1. $\pi_*(\Omega)^{\mathbb{G}_m}$. このシリーズでは 「 $\pi_*(\Omega)^{\mathbb{G}_m}$ 」と表記されるものが度々出てくる。本質的には同じものであり、 \mathbb{P}^n 上の coherent sheaf で、代数層の構造を持つものである。記号も以下述べるようにほぼ妥当なものだが、いろいろなことが少しづつ省略されているので、わかりにくいものになってしまっている。ここでハッキリと書いておくことにする。

定義 2.22.1. (1) $\mathbb{A}^{n+1} \setminus \{0\}$ のことを以下 \mathbb{A}_o^{n+1} と書く。

- (2) 自然な射影 $\mathbb{A}_o^{n+1} \to \mathbb{P}^n$ を π と書く。
- (3) \mathbb{A}_{o}^{n+1} のドラム複体を $\Omega_{\mathbb{A}_{o}^{n+1}}$ と書く。
- (4) \mathbb{P}^n 上の層 $\pi_*\Omega_{A^{n+1}}$ のことを省略して $\pi_*\Omega$ と書く。
- (5) $\pi_*\Omega$ には 自然な \mathbb{G}_m 作用があるから、それによる不変セクションのなす層を $(\pi_*\Omega)^{\mathbb{G}_m}$ と書く。

 $2.22.2.~(\pi_*\Omega)^{\mathbb{G}_m}$ の座標による表現. \mathbb{A}^{n+1} の座標 (\mathbb{P}^n の斉次座標) X_0,X_1,\ldots,X_n を取り、 π を

$$\pi: \mathbb{A}_o^{n+1} \ni (X_0, X_1, \dots, X_n) \mapsto [X_0, X_1, \dots, X_n]$$

と書こう。 $\{X_0 \neq 0\}$ なる \mathbb{A}^{n+1} の開集合に制限して考えると、 π は

$$(X_0, X_1, \dots, X_n) \mapsto [1 : X_1/X_0, \dots X_n/X_0]$$

と書けるから、πは下のように分解して考えることができる。

$$\mathbb{G}_m \times \mathbb{A}^n \hookrightarrow \mathbb{A}^{n+1} \stackrel{\pi}{\to} \mathbb{A}^n \subset \mathbb{P}^n$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup$$

$$(c, (x_1, x_2, \dots, x_n)) \mapsto (c, cx_1, cx_2, \dots, cx_n) \mapsto (x_1, x_2, \dots, x_n)$$

ここからすぐにわかることは:

- \log l な $\pi_*\Omega^{\mathbb{G}_m}$ の表現 -

 \mathbb{P}^n 上の層 $\pi_*\Omega^{\mathbb{G}_m}$ は super commutative な 環の層であって、

$$(\pi_*\Omega)^{\mathbb{G}_m} \cong \Omega_{\mathbb{P}^n}[X_0^{-1}dX_0].$$

2.22.3. WC の構造. このシリーズでは前変数、後ろ変数、2 つの \mathbb{P}^n が出てくる。そこで、一方の \mathbb{P}^n の射影座標を X_0,\ldots,X_n , その外微分を ∂ , もう一方の \mathbb{P}^n の射影座標を $\bar{X}_0,\ldots,\bar{X}_n$, その外微分を $\bar{\partial}$ と書くことにする。

Weil-Clifford 環の積構造の入れ方により、WC に対応する $\mathbb{P}^n \times \mathbb{P}^n$ 上の連接層 WC には $(\pi_*\Omega)^{\mathbb{G}_m}$ の前変数と後ろ変数のコピーがそれぞれ subalgebra として入っている。2つそれぞれは subalgebra である (積について閉じている) が、2うの subalgebra 相互の交換関係は一般には難しいことに注意が必要である。

とにかくも, WC は $\pi_*\Omega^{\mathbb{G}_m}$ (前変数) を左から、 $\pi_*\bar{\Omega}^{\mathbb{G}_m}$ (後変数) を右から掛ける意味で

 $\pi_*\Omega^{\mathbb{G}_m} \boxtimes \pi_*\bar{\Omega}^{\mathbb{G}_m}$ 上の「ステレオ加群」の構造を持つ。

定理 2.22.2. $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_+\Omega)^{\mathbb{G}_m}$ 上のステレを加群として WC は locally free であり、

$$\mathcal{WC} \cong \bigoplus_{l=0}^{\infty} \left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes (\pi_+ \Omega)^{\mathbb{G}_m} \right) (-l, -l)$$

2.25. ステレオ作用、ステレオ加群.。

 $\mathbb{P}^n \times \mathbb{P}^n$ 上の加群の層 A を定義する。

左側の \mathbb{P}^n の構造層のセクションを左から、右側の \mathbb{P}^n の構造層のセクションを右から作用させて考えよう。この作用をここでは「ステレオ作用」と呼ぶことにする。

 WC_{n+1} はステレオ作用により自然に可換多項式環 $\mathbb{k}[X_0,\ldots,X_n] \otimes_{\mathbb{k}}$ $\mathbb{k}[\bar{X}_0,\ldots,\bar{X}_n]$ 上の加群と見ることができ、したがって $\mathbb{A}^{n+1} \times \bar{\mathbb{A}}^{n+1}$ 上の加群の層と同一視することができる。

ここから $\mathbb{G}_m \times \mathbb{G}_m$ -作用で割って $\mathbb{P}^n \times \mathbb{P}^n$ 上の層を考えるのは易しい: WC_{n+1} は 自然な bigrading を持ち、ステレオ作用を入れた WC_{n+1} は $\mathbb{P}^n \times \mathbb{P}^n$ 上の加群の層と見ることができる。これを WC と書く。 WC は $\mathrm{O}_{\mathbb{P}^n \times \mathbb{P}^n}$ のステレオ作用を持つだけではなく、 $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ のステレオ作用 (いちいち定義しないが意味は明白だろう) を持つような加群であり、

WC は $\mathbb{P}^n \times \mathbb{P}^n$ 上 locally free であることがわかる。もう少し詳しく言うと、 $\{X_i \neq 0 \& \bar{X}_j \neq 0\}$ において、WC は $\{X_i^{-s}C^sX_j^{-s}\}_{s=0}^{\infty}$ を自由基底とする locally free module である。結局:

$$\mathcal{WC} \cong \bigoplus_{l=0}^{\infty} \left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes (\pi_* \Omega)^{\mathbb{G}_m} \right) (-l, -l)$$

A は WC を moment map で割ったもので、C のかかった部分が消える役割を果たす。A の (ステレオ) 加群としての構造はこのように見ればかなりわかりやすい。

3. 正標数と標数 0

3.30. **Ultrafilter による標数** 0 **への移行.** この件についても何度も書いている。kaehler3.pdf

http://www.math.kochi-u.ac.jp/docky/TALK/kaehler3/kaehler3.pdf (kaehler3.pdf) を参照のこと。Web からリンクをたどるには、土基のページ(日本語版)→古いページとたどって、広島大学(2014/11/05)での「話したり、話したかったことのノート」に行くとよい。

ultra product の話になるわけだが、この話は affine scheme の理論 を使えばかなり整理することができる。

基本的な主張と注意

集合 Λ によって index つけられた 体の族 $\{K_{\lambda}; \lambda \in \Lambda\}$ を考える。

- (1) 直積 $\prod_{\lambda \in \Lambda} K_{\lambda}$ をとる。
 - (a) $\prod_{\lambda \in \Lambda} K_{\lambda}$ のイデアルは Λ の filter と一対一に対応する。
 - (b) $\prod_{\lambda \in \Lambda} K_{\lambda}$ の素イデアルは必ず極大であり、極大イデアルは Λ の極大フィルターと一対一に対応する。
- (2) $\operatorname{Spec}(\prod_{\lambda \in \lambda} K_{\lambda})$ は Λ に離散位相を入れたものの最大コンパクト化 (Stone-Čech コンパクト化) と同相である。
- (3) $\mathfrak U$ における 超積 $K_{\mathfrak U}$ は $\operatorname{Spec}(\prod_{\lambda} K_{\lambda})$ における structure sheaf の stalk と一致する。したがって、「"limit"」 とこれ まで土基が呼んできたものは germ と呼べばよい。
- (4) $K_{\mathfrak{U}}$ は体である。 K_{λ} の 標数 $\operatorname{char}(K_{\lambda})$ が $\lambda \to \mathfrak{U}$ の極限で ∞ に収束するなら、 $K_{\mathfrak{U}}$ の標数は 0 である。
- (5) Λ としては素数全体の集合 P をとり、 K_{λ} としては \mathbb{F}_{p} を 考えるというのが土基の基本的なやり方であった。もちろんそれ以外でもよい。
- (6) K_{λ} としてすべて体 ℝ を採用すれば、超準解析の世界が出現する。(ただし、完全に超準解析をするためには、論理の超準化も必要になる。論理を moduli 空間の相互関係のように捉えれば、論理の超準化も理解しやすいかもしれない。)

Stone-Čech compact 化については wiki を参照のこと。

https://en.wikipedia.org/wiki/Stone%E2%80%93%C4%8Cech_compactification 言いたいことの(結果だけだが)半分ぐらいは書いてあった。

(2) (a) の対応は、次のように定義される:

 $\prod_{\lambda \in \Lambda} K_{\lambda}$ のイデアル I にたいして $\mathcal{F}_{I} = \{V(f); f \in I\}$ を対応させ、 Λ のフィルター \mathcal{F} に対しては、 $\prod_{\lambda \in \Lambda} K_{\lambda}$ のイデアル $I_{\mathcal{F}} = \{f; V(f) \in \mathcal{F}\}$ を対応させる。ただし、 $f = (f_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda} K_{\lambda}$ に対して、 $V(f) \stackrel{\mathrm{def}}{=} \{\lambda \in \Lambda; f_{\lambda} = 0\}$ である。

$$\chi_f \stackrel{\text{def}}{=} \begin{cases} 1 & \text{(if } f_\lambda \neq 0 \\ 0 & \text{(if } f_\lambda = 0 \end{cases}$$

とおけば、 $f \in I \Leftrightarrow \chi_f \in I$ であり、この性質を用いても (2)(a) の 対応を記述できる。

(2)(b) の前半の証明の肝: I が素イデアルだとする。 $A,B \in \Lambda$, $A\coprod B = \Lambda$ とすると、 $\chi_A + \chi_B = 1, \chi_A \chi_B = 0$ ゆえ、 $\chi_A \in I$ or $\chi_B \in I$.

3.34. U-解析学. ◎ height height の考えはもともと有理数に対してのものだと思うが、それを有限体に戻してくることにより、有限体の超積を使った我々の議論に「大きさ」(ユークリッド距離」を持ち込むことができる。

 $p \equiv -1(4)$ なる素数の全体を P_3 とおく。各 $p \in P_3$ に対して、 \mathbb{F}_{p^2} 内の -1 の平方根を一つ選び、 $\sqrt{-1}$ と書くことにする。 $x \in \mathbb{F}_{p^2}$ に対して、その "height" と "logarithmic height" を以下で定義する。

$$\operatorname{Ht}_{p}(x) = \min \left\{ |a| + |b| + |c| + |d| \middle| \begin{array}{l} a, b, c, d, \in \mathbb{Z}, \\ bd \notin p\mathbb{Z}, \\ x = a/b + c/d\sqrt{-1} \end{array} \right\},$$

$$\operatorname{ht}_p(x) = \log_p(\operatorname{Ht}_p(x))$$
 ("logarithmic height")

 \mathbb{F}_{p^2} の元 x,y に対して、その 和、差の height は x,y の height による上からの評価式を持つ。実際、

$$(a/b + c/d\sqrt{-1}) + (e/f + g/h\sqrt{-1}) = ((af + be)/bf) + ((ch + dg)/dh)\sqrt{-1}$$

ゆえ、 $\operatorname{Ht}_p(x+y) \leq 6 \operatorname{Ht}_p(x) \operatorname{Ht}_p(y)$. logarithmic height でいえば、

$$\operatorname{ht}_p(x+y) \le \operatorname{ht}_p(x) + \operatorname{ht}_p(y) + \log_p(6).$$

同様に、

$$\operatorname{Ht}_p(xy) \le 4 \operatorname{Ht}_p(x)^2 \operatorname{Ht}_p(y)^2.$$

logarithmic height でいえば、

$$\operatorname{ht}_p(xy) \le 2\operatorname{ht}_p(x) + 2\operatorname{ht}_p(y) + \log_p(4).$$

命題 3.34.1. 任意の $f \in \mathbb{Z}[X]$ に対して、ある正定数 C,D が存在して、任意の p に対して、

$$\operatorname{ht}_p(f(x)) \le C \operatorname{ht}_p(x) + \log_p(D)$$

が成り立つ。

系 3.34.2. P_3 の ultra filter (mod 4 で 3 と等しい ultra-prime number) $\mathfrak U$ をとる。

$$(\prod \mathbb{F}_{p^2})_{\mathfrak{U},\mathrm{slow}} = \{(x_p) \in (\prod_{p \in P_3} \mathbb{F}_{p^2})_{\mathfrak{U}}; \lim_{p \to \infty} \mathrm{ht}_p(x_p) = 0\}$$

と定義すると、これは $(\prod_{p\in P_3}\mathbb{F}_{p^2})_{\mathfrak{U}}$ の subring である。

 $x = (x_p) \in (\prod \mathbb{F}_{p^2})_{\mathfrak{U},\text{slow}}$ を一つとったとき、各正の実数 M にたいして、次のいずれかが起こる。

- (1) $|x_p| \le M$ が \mathfrak{U} -ほとんどすべての p についてなりたつ。
- (2) $|x_p| > M$ が \mathcal{U} -ほとんどすべての p についてなりたつ。

よって、x にたいして、次のいづれかが起きるということになる。

- (超準 1) ある実数 M が存在して、 $|x_p| \leq M$ が \mathcal{U} -ほとんどすべての p についてなりたつ。
- (超準 2) 任意の実数 M にたいして、 $|x_p| > M$ が \mathcal{U} -ほとんどすべての p についてなりたつ。

超準1 が起こるとき、x は有限、超準2 が起きるとき、x は無限であるということにしよう。

$$(\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \text{slow}, \text{finite}} = \{x \in (\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \text{slow}}; \ x \ は有限 \}$$

は $(\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \mathrm{slow}}$ の subalgebra であり、

$$(\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \text{slow}, \text{finite}} \to \mathbb{C}$$

なる surjection が極限をとる操作により定まる。その kernel は「無限 小全体のなす $(\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \mathrm{slow}, \mathrm{finite}}$ のイデアル」 である。すなわち、 \mathbb{C} は $(\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \mathrm{slow}, \mathrm{finite}}$ の subquotient である。このような状況は超準解析でよく見られる。

問題 3.1. $(\prod \mathbb{F}_{p^2})_{\mathfrak{U}, \text{slow}, \text{finite}}$ 上の「解析学」を完成させよ。(とくに、複素解析学、複素多様体論に興味がある。)

疑問:

Harmonic theory のような解析のうち、cohomology のような実は \mathbb{F}_p (もしくは \mathbb{Z}) 上で定義されるような話 (例えば、多様体 M 上の Harmonic forms は $H^k(M,\mathbb{R})$ の元を与えるが、 $H^k(M,\mathbb{R})$ は \mathbb{Z} 上の $H^k(M,\mathbb{Z})$ を係数拡大したものとみなせる。) は \mathbb{F}_p (もしくは \mathbb{Z}) だけですむように出来ないだろうか?

3.36. U-**解析学 (補足).** 注意:本稿は別の目的のために書かれたものだが、途中の結果が必要になるので付け加えておく。最後の方は関係ないが一応残してある。

◎ height の話の補遺

要するに: \mathbb{F}_p と \mathbb{Q} とは height を p に関して小さめに取ればよく似ていることを本稿では示す。これを用いれば、Cauchy 列 etc を用いて完備化するときに p と height に気をつけてさえいれば \mathbb{Q} の完備化 \mathbb{R} は \mathbb{F}_p からも似たように作れるし、 \mathbb{C} でも同じように作れるということがわかる。

3.37. **基本写像.** p は素数であるとする。この考察では、次のような写像を考察する。ここでは簡単のためこの写像を基本写像とよぼう。

$$f: \{\frac{m}{n} | m, n \in \mathbb{Z}, |m| < \sqrt{p}, 0 < n < \sqrt{p}\} \ni \frac{m}{n} \mapsto \frac{m}{n} \in \mathbb{F}_p$$

次のことが大事である。

命題 3.37.1. 基本写像は全射である。

Proof. 明らかに、 $0 = f(0) \in Image(f)$. 以下、簡単のため $k_0 = \lfloor \sqrt{p} \rfloor$ とおく。 $x \in \mathbb{F}_p^{\times}$ をとろう。 $k = 0, 1, \ldots, k_0$ に対して、 $kx \in \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ を考える。すなわち、

$$0, x, 2x, 3x, 4x, \dots, k_0 x \in \mathbb{Z}/p\mathbb{Z}(\subset \mathbb{R}/p\mathbb{R})$$

これは、長さpの円周上に k_0+1 個の異なる点が載っていることになる。したがって、それらの中から異なる2点を選んだ時の距離の最小値は $\frac{p}{k_0+1}$ 以下である。すなわち、

$$||n_2x - n_1x||_{\mathbb{R}/p\mathbb{R}} \le \frac{p}{k_0 + 1} \quad (0 \le \exists n_1 < \exists n_2 \le k_0)$$

 $n=n_2-n_1$ とおくと、 $n\in[1,m_0]$ である。また nx=m であって、 $|m|<\frac{p}{k_0+1}$ をみたす $m\in\mathbb{Z}$ が存在することになる。

m の取りうる範囲を考えてみよう。ko の定義により、

$$p < (k_0 + 1)^2$$
.

ゆえに、 $p/k_0+1<(k_0+1)$. よって、 $|m|< k_0+1$. 整数同士の比較なので、結局、 $|m|\leq k_0$ である。

3.38. **いくつかの集合の定義.** 基本写像の考察のため、いくつかの集合を定義しておく。毎回 \sqrt{p} と書くのは少々うざったいので、代わりに正の数 α を用いる。まず、基本写像の定義域にあたるものを X_{α} とおく。すなわち、

$$X_{\alpha} = \left\{ \frac{m}{n} | m, n \in \mathbb{Z}, |m| < \alpha, 0 < n < \alpha \right\}.$$

つぎに、 $\alpha > 0$ に対して次の重要な集合を定義する。

$$I_{\alpha} = \left\{ \frac{m}{n} | m, n \in \mathbb{Z}, 0 < m < n < \alpha \right\}.$$

つぎの記法はまあまあスタンダードだ。

$$I_{\alpha}^{-1} = \left\{ x^{-1} | x \in I_{\alpha} \right\}.$$

3.39. **集合たちの関係と元の個数.** X_{α} は符号を変える操作に関して対称である。

$$X_{\alpha} = -(X_{\alpha})_{>0} \prod \{0\} \prod (X_{\alpha})_{>0}$$

さらに、 $(X_{\alpha})_{>0}$ は逆数を取る操作について対称で、

$$(X_{\alpha})_{>0} = I_{\alpha} \prod \{1\} I_{\alpha}^{-1}.$$

最後に、

$$I_{\alpha} = \coprod_{2 \le n \le \alpha} \left\{ \frac{m}{n} | 0 < m < n; \gcd(m, n) = 1 \right\}.$$

右辺の一つ一つの元の個数はオイラー標数 $\varphi(n)$ に等しい。よって、

$$\#I_{\alpha} = \sum_{2 \le n \le \alpha} \varphi(n)$$

さかのぼって、

$$\#X_{\alpha} = 4\left(\sum_{2 \le n\alpha} \varphi(n)\right) + 3$$

3.40. 基本写像のファイバー.

命題 3.40.1. 素数 p と基本写像 f について、次が成り立つ。

- (1) 基本写像 f のファイバーの元の個数は 1 もしくは 2 である。
- (2) $f(x_1) = f(x_2)$ で、 $x_1 \neq x_2$ なるものは、

$$A_p = \{a, b, c, d \in \mathbb{Z} | ab + cd = p, 1 \le a, b, c, d \le \sqrt{p}\}$$

の元と1対1に対応する。

 $Proof. \ x_1, x_2 \in X_{\sqrt{p}}, \ x_1 \neq x_2, \ f(x_1) = f(x_2) \ とする。定義により、$

$$x_1 = \frac{m_1}{n_1}, x_2 = \frac{m_2}{n_2}; \quad m_1, m_2, n_1, n_2 \in \mathbb{Z}, \ 0 < n_1, n_2, |m_1|, |m_2| < \sqrt{p}$$

と書くことができる。 $f(x_1) = f(x_2)$ により、

$$m_1 n_2 - m_2 n_1 \in p\mathbb{Z}$$

が従うが、他方で大きさについての制限により、

$$|m_1 n_2 - m_2 n_1| < 2\sqrt{p^2} = 2p.$$

また、 $x_1 \neq x_2$ により、

$$|m_1 n_2 - m_2 n_1| \neq 0.$$

よって、

$$|m_1 n_2 - m_2 n_1| = p.$$

必要なら x_1 と x_2 の役割を入れ替えて、

$$m_1 n_2 - m_2 n_1 = p$$

としてよい。再び大きさについての制限により、 m_1 と m_2 の符号は異ならなければならず、

$$m_1 = a_1, m_2 = -a_2(0 < \exists a_1, a_2 < \sqrt{p}).$$

$$a_1n_2 + a_2n_1 = p$$

あとはあきらかだろう。

系 3.40.2. 基本写像を " $\operatorname{Ht} \leq \frac{\sqrt{p}}{2}$ の範囲"

$$\{\frac{m}{n}; m,n\in Z; |m|<\frac{\sqrt{p}}{2}, 0< n<\frac{\sqrt{p}}{2}\}$$

に制限したものは単射である。

以下は直接は関係ない。

② 注意 A_p の元 (a,b,c,d) から $a/c \in \mathbb{F}_p^{\times}$ への対応は単射である。 とくに、

$$0 \le \#A_p \le p - 1.$$

3.41. 基本写像から得られる等式.

$$4\left(\sum_{2 \le n < \sqrt{p}} \varphi(n)\right) + 3 - \#A_p = p$$

数値実験によれば、 $p \sim 10^9$ 周辺では、 $\#A_p \sim p/4.63$.

$$b_m = 4 \sum_{2 \le n \le m} \varphi(n) + 3, \quad a_p = \# A_p$$

とおく。前の結果によると、 $b_{|\sqrt{p}|} = p + a_p$ である。

totient の wikipedia の記述を見れば、totient の和の挙動がわかり、4.63... のところが説明できる。実際、

$$\sum_{n=1}^{m} \varphi(n) = \frac{3m^2}{\pi^2} + \dots$$

であるから、 $a_p \sim \left(4(\frac{3p}{\pi^2}-p)\right) = p/(4.632756661...)$ である。

4. C の消去:無限小の場合

4.40. **無限小の場合の整理.** No.040-No.059 では moment map が 0 という関係式から *C* を消去する方針で攻める。

 μ は WC のイデアルではないから、「消去」と言っても通常の、「代入するアレ」とは少し異なる。

No.040-No.049 は「無限小の場合」 をまとめておくことにする。

係数環として $\mathbb{k}_2 = \mathbb{k}[h][[k]]$ を採用し、No.020 で定義した Weyl-Clifford algebra WC_{n+1} をつかう。(正確には、020 での定義と定数や係数環の取り扱いが少し異なるが、ほとんど同じものをもう一度書くのは面倒なのであとで直すことにする。) moment map として $\mu = C - k \sum_i X_i \bar{X}_i + \sum_i E_i \bar{E}_i$ を用いて、

$$A = (\mathrm{WC}_{n+1})_{(0)}/(\mu)$$

を考えよう。k による除法を使っていないので k-torsion について悩まされることはない。ただし、C が後にわかるように topologically nilpotent であるので、最初に思い描いていた図とも異なるものができる。

Aでは

$$C^p - (hCk)^{p-1}C = k^p \sum_i X_i^p \bar{X}_i^p$$

であるから、

補題 4.40.1. A では

$$C^{p} = \frac{k^{p}}{1 - (hk)^{p-1}} \sum_{i} X_{i}^{p} \bar{X}_{i}^{p}.$$

このことから、 A に対応する $\operatorname{Proj}(\mathbbm{k}_2[\{X_i^pX_k^p\}]) = \mathbb{P}^n \times \mathbb{P}^n$ 上の quasi coherent sheaf A は 実際には finite rank (ゆえに、coherent) で あることがわかる。

 $\operatorname{WC}_{(0)}/(C^p-(\frac{k^p}{1-(hk)^{p-1}}\sum X_i^p \bar{X}_i^p))$ のことを B と書き、B に付随する $\mathbb{P}^n \times \mathbb{P}^n$ 上の層を B と書く。

定義 4.40.2. \mathfrak{B} は $(\pi_*\Omega)^{\mathbb{G}_m}$ (第 1 変数) を左から、 $(\pi_*\bar{\Omega})^{\mathbb{G}_m}$ (第 2 変数) を右から掛けることで $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ -加群の構造を持つ。この作用を $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ の \mathfrak{B} へのステレオ作用と呼ぶことにする。

次の命題は B が「ステレオ加群」として locally free であることを示している。

命題 4.40.3. $\mathbb{P}^n \times \mathbb{P}^n$ 上の sheaf として、

$$\bigoplus_{l=0}^{p-1} \left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes (\pi_* \Omega)^{\mathbb{G}_m} \right) \otimes \mathfrak{O}(-1, -1)^l \cong \mathfrak{B}.$$

右、左の区別を明確にして、きちんと書くと、 $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes 1$ - - $1 \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ 加群として、

$$\bigoplus_{l=0}^{p-1} \left(\left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes 1 \right) \otimes \mathcal{O}(-1, -1)^l \otimes \left(1 \boxtimes (\pi_* \Omega)^{\mathbb{G}_m} \right) \right) \cong \mathcal{B}.$$

Proof.

$$\bigoplus_{l=0}^{p-1} \left(\left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes 1 \right) \otimes \mathcal{O}(-1, -1)^l \otimes \left(1 \boxtimes (\pi_* \Omega)^{\mathbb{G}_m} \right) \right)$$

$$\ni (\alpha_{\lambda, l} \otimes 1 \otimes \beta_{\lambda, l})_{\lambda, l}$$

 \mapsto

$$\sum_{l,\lambda} \alpha_{\lambda,l} \mu^l \beta_{\lambda,l} \in \mathfrak{B}.$$

を考えよう。これは、全射 (No.28 のテクニック)、かつ、定義域と終域はランクが等しい $(\mathbb{P}^n \times \mathbb{P}^n)_{\operatorname{Spec}(\Bbbk_2)}$ 上の locally fee sheaf である。 (No.21,24) よって、 Φ は加群の層の同型を与える。

系 4.40.4. 掛け算から定義される写像により、次の加群の層としての同型が得られる。

$$(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m} \cong \mathcal{A}.$$

もちろん、環としては両辺は全く異なるわけだが、cohomology を計算するにはさしあたってこれで十分である。No.045 にその結果が陳述してある。

4.42. B **の構造.** B の構造を述べておかねばならない。基本的には正規順序 (normal ordering) に合わせてならび変えるだけなのであるが、

- (1) 必要以上に環のサイズが減っていないこと。
- (2) 正規順序に並び替える際に C が現れるが、C 自体が μ_0 という若干複雑な元で置き換えられて、また新たな並び替えが必要になること。

に注意が必要である。

以下、添字 i は 0 から n まで、 j は 1 から n まで動くことにする。 たとえば $X_i = \{X_0, X_1, \ldots, X_n\}$ である。

環 A や B の生成元と関係式はかなり簡単にわかる。サイズが減らないのを調べるにはそれらの環の正則表現にあたるおのを実際に構成

して見せるのが定跡ではあるが、それは面倒なので、扱う環の推移に 注意しながら、既存の Weyl 環等の構造論を使うことにする。

- (1) $WC_{n+1} = \mathbb{k}_2 \langle X_i, \bar{X}_i, E_i, \bar{E}_i, C \rangle$ から始める。これは \mathbb{k}_2 上 free であり、 \mathbb{k}_2 上の 2n+3 変数可換多項式環上の微分形式の全体 のなす環とサイズが同じである。(既知の一般論) もっと具体的 には、 $\operatorname{Spec} \mathbb{k}[X_0^p, \dots, X_n^p, \bar{X}_0^p, \dots, \bar{X}_n^p, C^p]$ 上の $\operatorname{rank} p^{2n+3} 2^{2n+2}$ の locally free sheaf と対応する加群である。
- (2) $(WC_{n+1}[X_0^{-p}])_0 = \mathbb{k}_2 \langle x_{j}, e_{i}, e'_{i}, x'_{j}, x'_{0}, C \rangle \cong WC_{n,n+1} \langle x'_{0} \rangle$ この環は \mathbb{A}^{2n+2} 上の層 WC_{n+1} を \mathbb{G}_m の "(1,-1)"-作用で割っ たものを $U^{\circ} = \{X_0 \neq 0\}$ に制限した層に対応したものである。) 注意点:
 - (a) X_0^{-p} を付け加えることと X_0^{-1} を付け加えることは結果的 に同じことだが、 X_0^{-p} は center の元なのでこちらのほう が議論が易しい。
 - (b) $x_0' = X_0 \bar{X}_0$ は 0 に関する degree deg₀ の hC 倍である。

$$[x_0', \xi] = hC \deg_0(\xi)\xi \qquad (\forall \xi \in WC[X_0^{-p}].)$$

言い換えると、

$$x_0'\xi = \xi(x_0' + hC \deg_0(\xi)) \qquad (\forall \xi \in WC[X_0^{-p}].)$$

である。ただし dego は以下で決まるような次数付け。

変数:
$$X_0$$
 X_j X_0 X_j E_i E_i C \deg_0 : 1 0 -1 0 0 0 0

この交換関係により、x'n 変数はすべて項の後ろに持ってい くことができ、 $\mathrm{WC}_{n,n+1}\langle x_0' \rangle$ のサイズは $\mathbb{k}_2[x_0']$ 上の 2n+1変数の多項式環上の 2n + 2 個の生成元からなる外積代数 と同じサイズである。

(c) 変数変換:

(d) この時点で、B が $O^{(p)}$ 上 locally free であることと、その rank がわかる。

$$x_{j}$$
 の分… p^{n}
 e_{i} の分… 2^{n+1}
 e'_{i} の分… 2^{n+1}
 x'_{j} の分… p^{n}
 x'_{0} の分… p
 C の 分… p
 G_{m} 不変の要求 (*)… $1/p$

$$\mathbb{G}_m$$
个変の要求 $(*)...1/p$

total...
$$p^{2n}2^{2(n+1)} \cdot p$$

(*) 次数合わせのために x'_0 の冪で割らねばならぬ。 その分。 ただし、

$$B = WC_{(0)} / (C^p - (\frac{k^p}{1 - (hk)^{p-1}} \sum_i X_i^p \bar{X}_i^p))$$

(3) $(WC_n[X_0^{-p}, \bar{X}_0^{-p}])_{(0)}$ を考える。

- (a) e'_i, x'_j を \bar{e}_i, \bar{x}_j に ($x'_0, (x'_0)^{-1}$ の存在を前提に) 変数変換する。 (U_{00} 上で考える。) $e'_i = X_0 \bar{E}_i = X_0 \bar{X}_0 \bar{X}_0^{-1} \bar{E}_i = (x'_0) \bar{e}_i, x'_i = X_0 \bar{X}_i = X_0 \bar{X}_0 \bar{X}_0^{-1} \bar{X}_i = (x'_0) \bar{x}_i,$
- (b) x_0' を後ろに持っていく。(C が出てくる。) 項順序を $x_j < e_j < e_0 < \bar{e}_0 < \bar{e}_j < \bar{x}_j < x_0' < C$ にとる。 変数: x_j e_j e_0 \bar{e}_0 \bar{e}_j \bar{x}_j x_0' C deg₀: -1 -1 1 1 0 0
- (c) $\overline{(WC_n[X_0^{-p}, \bar{X}_0^{-p}])_{(0)}} = \mathbb{k}\langle x_{i}, e_{i}, \bar{e}_{i}, \bar{x}_{i}, x'_0, (x'_0)^{-1}, C \rangle$
- (4) total degree が 0 の部分を考える。 x_0' と他の部分との交換関係、C が center に属することから、 x_0' , C の部分を真ん中に移動させ、-旦 X_0^{-p} , \bar{X}_0^{-p} の高い冪を共通分母を取ってから normal ordering にならべかえることにより、次を得る。

$$(WC_n[X_0^{-p}, \bar{X}_0^{-p}])_{(0,0)} = \sum_t \mathbb{k}_1 \langle k, x_{j}, e_{i} \rangle \cdot X_0^{-t} \bar{X}_0^{-t} C^t \cdot \mathbb{k}_1 \langle k, \bar{e}_{i}, \bar{x}_{j}, x'_0, (x'_0)^{-1} \rangle$$

4.43. C の消去. 42 で述べたように $\mathfrak B$ は $(\Omega)^{\mathbb G_{m_-}}$ - $(\Omega)^{\mathbb G_m}$ 両側加群として

$$(X_0^{-p}\bar{X}_0^{-p})^k(x_0')^lC^m$$

(-2kp+l+m=0) のかたちの元で生成される。

これらは \bar{X}_0 と X_0 との交換関係を用いて $X_0^{-m}\bar{X}_0^{-m}C^m=X_0^{-m}C^m\bar{X}_0^{-m}$ の \mathbb{R}_1 上の線型結合で書くことができる。

 $A \rightarrow B$ においては、 $\mu_1 = 0$ なので、 $C = \mu_0$ なのだが、

(誤り)
$$X_0^{-s}C^s\bar{X}_0^{-s} = X_0^{-s}\mu_0^s\bar{X}_0^{-s}$$

とやってはいけない。 (μ_1) は A や B のイデアルではあるが、 $WC_{(0)}$ のイデアルではないから。

$$\xi_s = X_0^{-s} \bar{X}_0^{-s} C^s$$

とおく。 $C \equiv \mu_0$ なる関係式を採用する。のだが、精密化して、

$$\mu_{1,j} = \mu_1 - jkhC = (1 - jkh)C + \mu_0$$

を考える。以下、便利のため、

$$\mu_1^{[j]} = \prod_{l=0}^{j-1} (\mu_1 - lkhC)$$

とおく。 \mathbf{B} においては $\mu_1^{[p-1]} = k^p \sum_i X_i^p \bar{X}_i^p$ であることに注意しておく。

$$\begin{split} \xi_s &= X_0^{-s} \bar{X}_0^{-s} \\ &= X_0^{-s} \bar{X}_0^{-s} (1 - jkh)^{-1} (\mu_{1,j} - \mu_0) C^{s-1} \\ &\equiv -(1 - jkh)^{-1} X_0^{-s} \bar{X}_0^{-s} \mu_0 C^{s-1} \\ &= -(1 - jkh)^{-1} X_0^{-s} (\mu_0 \pm khsC) \bar{X}_0^{-s} C^{s-1} \\ &= -(1 - jkh)^{-1} (\pm) khs \xi_s - (1 - jkh)^{-1} X_0^{-s} \mu_0 \bar{X}_0^{-s} C^{s-1} \end{split}$$

さて、k は位相的に無限小であると仮定したので、(1+skh) は $s\in\mathbb{Z}$ に対して可逆である。

他方、

$$X_0^{-(s-1)}(X_0^{-1}\mu_0\bar{X}_0^{(-1)})\bar{X}_0^{-(s-1)}C^{s-1}$$

$$=X_0^{-(s-1)}(k(1+\sum_j x_j\bar{x}_j)+\sum_i e_i\bar{e}_i)\bar{X}_0^{-(s-1)}C^{s-1}$$

$$=k(X_0^{-(s-1)}\bar{X}_0^{-(s-1)}C^{s-1}+\sum_j x_jX_0^{-(s-1)}\bar{X}_0^{-(s-1)}C^{s-1}\bar{x}_j)$$

$$+\sum_i e_iX_0^{-(s-1)}\bar{X}_0^{-(s-1)}C^{s-1}\bar{e}_i$$

$$=k(\xi_{s-1}+\sum_j x_j\xi_{s-1}\bar{x}_j)+\sum_i e_i\xi_{s-1}\bar{e}_i$$

最後の等式は、交換関係を用いて外の X_0, \bar{X}_0 を内側に持ってきてから、該当する部分を ξ と書き換えた。

$$\mathfrak{B} = \mathfrak{C} + \mathfrak{B} \cdot \mu_{1,i}$$

$$\mathcal{B} = \mathcal{C} + \mathcal{B} \cdot \mu_{1,0}$$

$$= \mathcal{C} + \mathcal{C}\mu_{1,0} + \mathcal{B} \cdot \mu_{1,0}$$

$$= \mathcal{C} + (\mathcal{C}\mu_{1,0} + \mathcal{B}\mu_{1,1}) \cdot \mu_{1,0}$$

$$= \mathcal{C} + \mathcal{C}\mu_{1,0} + \mathcal{B} \cdot \mu_{1,1}\mu_{1,0}$$

$$= \mathcal{C} + \mathcal{C}\mu_{1,0} + (\mathcal{C} + \mathcal{B}\mu_{1,2}) \cdot \mu_{1,1}\mu_{1,0}$$

$$= \cdots =$$

$$= \sum_{j=0}^{p-1} \mathcal{C}\mu_1^{[j]} + k^p (\sum_i X_i^p \bar{X}_i^p) \mathcal{B}$$

中山の補題により、

$$\mathcal{B} = \sum_{j=0}^{p-1} \mathcal{C}\mu_1^{[j]}$$

4.45. $\bar{\partial}$ -cohomology (無限小版). ひきつづき、正標数で、「無限小の場合」について議論しよう。 $\mathbb{k}_1 = \mathbb{k}[h], \mathbb{k}_2 = \mathbb{k}_1[[k]]$ であったことに注意する。A の加群構造を決定する際には、 \mathbb{k}_2 -加群としての構造を見ていたわけであるが、 $\bar{\partial}$ -complex としての構造を見る際には、k を係数環の元と見るのをやめて、 \mathbb{k}_1 -係数で議論する。これは k の form としての degree が (1,1) であるためである。

定理 4.45.1. 無限小の場合について考える。このとき、

(1) 加群の層として $A \cong \pi_* \Omega^{\mathbb{G}_m} \boxtimes \pi_* \Omega^{\mathbb{G}_m}$ である。 $\{X_0 \neq 0 \& \bar{X}_0 \neq 0\}$ においては、次のように書いたほうがわかりいいかもしれない。

$$\mathcal{A} \cong \Omega_{\mathbb{P}^n}[\partial \log X_0] \boxtimes \bar{\Omega}_{\mathbb{P}^n}[\bar{\partial} \log \bar{X}_0]$$

以下ではこの形で書く。

(2) $\bar{\partial}$ -complex $\mathcal{E} \cup \mathcal{T}$,

$$(\mathcal{A}, \bar{\partial})$$
($\cong (\pi_* \Omega^{\mathbb{G}_m}, -k \operatorname{Int}_{\sum_i X_i \partial / \partial X_i}) \boxtimes (\pi_* \Omega^{\mathbb{G}_m}, \bar{\partial})$ (Int は内部微分))
 $\cong (\Omega_{\mathbb{P}^n}[\partial \log X_0], \bar{\partial}) \boxtimes (\bar{\Omega}_{\mathbb{P}^n}[\bar{\partial} \log \bar{X}_0], \bar{\partial})$

である。ただし、(通常の考えと違って、) 前変数の $\bar{\partial}$ は

$$\bar{\partial}\partial \log X_0 = -k$$

を満たすような $\Omega_{\mathbb{P}^n}$ -線形作用素である。

(3) \mathbb{k}_1 上の $\bar{\partial}$ -complex として、

$$(\Omega_{\mathbb{P}^n}[\partial \log X_0], \bar{\partial}) \boxtimes (\bar{\Omega}_{\mathbb{P}^n}[\bar{\partial} \log \bar{X}_0], \bar{\partial})$$

は

$$(\Omega_{\mathbb{P}^n},0)\boxtimes(\bar{\Omega}_{\mathbb{P}^n,\mathrm{sparse}}[\bar{\partial}\log\bar{X}_0],0)$$

と導来同値である。

(4) ∂ に関しても同様である。

Proof. (1) この同型は正規順序により決まるので、 $\partial, \bar{\partial}$ 作用素を吟味するのはやさしい。まず A で吟味し、その結果を上の同型で送り込めばよいのだ。

(2) 右側、第二変数については $\bar{\partial}$ は通常の外微分の意味を持ち、左側、第一変数については、

$$\bar{\partial} = \operatorname{Int}_{\sum_i X_i \bar{\partial}/\bar{\partial} X_i}$$

が成り立つ。

 $\sum_i X_i \bar{\partial}/\bar{\partial} X_i$ は Euler operator と呼ばれるものと等しいことにも注意しておこう。とくにこれは座標不変である。(2) の証明は、

$$\bar{\partial}x_i = 0, \quad (\bar{\partial}(\partial x_i)) = -\partial\bar{\partial}x_i = 0$$

である (∂ と $\bar{\partial}$ の間の交換子は deg 作用素であることに注意) ことと、 $\bar{\partial}e_0 = -k$ とからすぐにわかる。

(3) 前変数のコホモロジーについて考えよう。 $\xi = \alpha + \beta \bar{\partial} \log(X_0)$ $(\alpha, \beta \in \Omega_{\mathbb{P}^n})$ に対して、 $\bar{\partial} \xi = -k\beta$ であるから、cocycle は $\mathbb{k}_1[k] \cdot \Omega_{\mathbb{P}^n}$ であり、coboundary は $k\Omega_{\mathbb{P}^n}$ である。

結局、前変数の complex は $(\Omega_{\mathbb{P}^n},0)$ と quasi isom であることがわかる。

後変数について考えよう。Cartier operator は $\bar{X}_0^{-1}\bar{\partial}\bar{X}_0$ を不変にすることから、Deline-Illusie 理論は全くこの場合にも同じように使えて、後変数の complex は、 $(\bar{\Omega}_{\mathbb{P}^n}^{(p)} + \bar{\Omega}_{\mathbb{P}^n,\mathrm{sparse}}\bar{\partial}\log(X_0),0)$ と quasi isom である。

この complex は cohomology 環は cup 積に関して super 可換である はずである。したがって、cohomology に関しては可換理論と全く変わるところはない。

4.46. **有限の場合の整理**. この部分は書きかけだったり、とりあえずの記述だったりの集まりであり、土基以外の人が読むに値しない。

結果として、 $\pi_*\Omega^{\mathbb{G}_m}$ は $\mathbb{k}[\bar{X}_0\bar{\partial}X_0]\otimes(\Omega_{\mathbb{P}^n})_{\mathrm{DR}}$, と同型である。 $\mathbb{k}[\bar{X}_0\bar{\partial}X_0]$ は \mathbb{G}_m (言い換えると、 S^1) のコホモロジーに対応している。

コホモロジーに関するこの考察は、A と $\pi_*\Omega^{\mathbb{G}_m} \boxtimes \pi_{\Omega}^{\mathbb{G}_m}$ との同型が存在するときにのみ有効で、つまり標数 p のときのみ有効である。

課題

「free resolution 」と以下で思っているのは $\mathbb{k}_1[k]/(k)$ 上であるので、 $\mathbb{k}_1[k]$ 上でやるためには Torsion $(\overset{\mathbb{L}}{\otimes})$ について議論しなければならない。

定理 4.46.1. $((\pi_*\Omega_{\mathbb{A}^n_o})^{\mathbb{G}_m}, d)$ は $(\Omega_{\mathbb{P}^n, \text{sparse}}[d \log X_i], 0)$ と quasi-isomorphic である。

 $d\log X_i$ は i に依存するが 対数微分の公式により、その差は Ω に属する。故に右辺に現れる sheaf は well-defined であることに注意。(書き方はもっといいやつがほしいところだ。)

 $(\Omega_{\mathbb{P}^n,\text{sparse}}[d\log X_i],0)$ は右辺の free resolution である。よって、 $\mathbb{R}\Gamma$ が気楽に取れる。ついでに、 \mathbb{P}^n の submanifold X の定義イデアル I に対し、 $\pi_*\Omega_{\mathbb{A}^n_o})^{\mathbb{G}_m}$, $d \mod I^p$ も flatness により良いものだとわかり、 $\mod I^p$ での cohomology の問題が解決する。

別の問題: 標数 p から 標数 0 への移行はどのくらい可能であろうか? A が有限生成であることから、すべてはうまく行くように思われる。—と言いたいところだが、どのカテゴリーを相手にするかによって問題が根本的に異なる。 $\mathcal{A}^{(p)}$ -module としてならばコホモロジーはたいそう易しいが、標数 0 での意味を失う。

4.46.1. ノート. f が affine morphism であれば、 f_* は exact functor なのであった。とくに f_* は cohomology の間の同型を誘導する。

 $\mathbb{P}^n \times \mathbb{P}^n$ のうえに A と $\mathbb{O}^{(p)}$ が二重帝国を築いているのはそのように見れば見やすい。

5. C の消去:有限の場合

5.50. **有限の場合の整理.** No.050-No.059 は「有限の場合」 をまとめて おくことにする。

「無限小の場合」を下敷きに書き換えて原稿作成中につき、おかしいところが満載なので読む場合には注意のこと。

係数環として $\mathbb{k}_2 = \mathbb{k}[h, \frac{1}{1-h^{p-1}}][k]$ を採用し、No.020 で定義した Weyl-Clifford algebra WC_{n+1} をつかう。(正確には、020 での定義と 定数や係数環の取り扱いが少し異なるが、ほとんど同じものをもう一度書くのは面倒なのであとで直すことにする。) moment map として $\mu = \sum_i X_i \bar{X}_i + \frac{1}{k} \sum_i E_i \bar{E}_i - C$ を用いて、

$$A = (WC_{n+1})_{(0)}/(\mu)$$

を考えよう。 *A* では

$$C^{p} - (hC)^{p-1}C = \sum_{i} X_{i}^{p} \bar{X}_{i}^{p}$$

であるから、

補題 5.50.1. A では

$$C^{p} = \frac{1}{1 - h^{p-1}} \sum_{i} X_{i}^{p} \bar{X}_{i}^{p}.$$

このことから、 A に対応する $Proj(\mathbb{k}_2[\{X_i^pX_k^p\}]) = \mathbb{P}^n \times \mathbb{P}^n$ 上の quasi coherent sheaf A は 実際には finite rank (ゆえに、coherent) で あることがわかる。

 $\mathrm{WC}_{(0)}/(C^p-(\frac{1}{1-h^{p-1}}\sum X_i^par{X}_i^p))$ のことを B と書き、B に付随する $\mathbb{P}^n\times\mathbb{P}^n$ 上の層を \mathcal{B} と書く。

定義 5.50.2. $m = \frac{1}{k} \sum_i \partial X_i \bar{\partial} \bar{X}_i$ とおき、

$$\mathcal{F} = ((\pi_*\Omega) \boxtimes (\pi_*\Omega)[m])^{\mathbb{G}_m \times \mathbb{G}_m}$$

と定義する。

局所的には、次のように書ける:

$$m_0 \stackrel{\text{def}}{=} X_0^{-1} m \bar{X}_0 = \frac{1}{k} \left((\partial \log X_0) (\bar{\partial} \log \bar{X}_0) + \sum_{j=1}^n (\partial x_j + x_j \partial \log X_0) (\bar{\partial} x_j + \bar{x}_j \bar{\partial} \log \bar{X}_0) \right)$$

と置くと、

$$\mathcal{F} = (\Omega_{\mathbb{P}^n} \boxtimes \Omega_{\mathbb{P}^n})[\partial \log X_0, \bar{\partial} \log \bar{X}_0, m_0]$$

である。

定義 5.50.3. \mathfrak{B} は $(\pi_*\Omega)^{\mathbb{G}_m}$ (第 1 変数) を左から、 $(\pi_*\bar{\Omega})^{\mathbb{G}_m}$ (第 2 変数) を右から掛けることで $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ -加群の構造を持つ。この作用を $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ の \mathfrak{B} へのステレオ作用と呼ぶことにする。ついでに、 $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ のステレオ作用 をもつ加群をステレオ加群と呼ぶことにする。

– FIXME -

以下、(No.55まで) m や m_0 が入った形で書いてあるものが正しい。入っていないのはまだ書き換えの途中だからである。

命題 5.50.4. $(\pi_*\Omega)^{\mathbb{G}_m} \boxtimes (\pi_*\Omega)^{\mathbb{G}_m}$ の B へのステレオ作用は $\mathfrak F$ の $\mathfrak B$ への作用に一意的に拡張できる。

命題 5.50.5.

$$\bigoplus_{l=0}^{p-1} \mathfrak{F} \otimes \mathfrak{O}(-1,-1)^l \cong \mathfrak{B}.$$

右、左の区別を明確にして、きちんと書くと、

$$\bigoplus_{l=0}^{p-1} \left(\left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes 1 \right) \otimes \mathcal{O}(-1, -1)^l \otimes \left(1 \boxtimes (\pi_* \Omega)^{\mathbb{G}_m} \right) \right) \cong \mathcal{B}.$$

Proof.

$$\bigoplus_{l=0}^{p-1} \left(\left((\pi_* \Omega)^{\mathbb{G}_m} \boxtimes 1 \right) \otimes \mathcal{O}(-1, -1)^l \otimes \left(1 \boxtimes (\pi_* \Omega)^{\mathbb{G}_m} \right) \right)$$

$$\ni \left(\alpha_{\lambda, l} \otimes 1 \otimes \beta_{\lambda, l} \right)_{\lambda, l}$$

 \mapsto

$$\sum_{l,\lambda} \alpha_{\lambda,l} \mu^l \beta_{\lambda,l} \in \mathcal{B}.$$

を考えよう。これは、全射 (No.28 のテクニック)、かつ、定義域と終域はランクが等しい ($\mathbb{P}^n \times \mathbb{P}^n$) $_{\operatorname{Spec}(\Bbbk_2)}$ 上の locally fee sheaf である。 (No.21,24) よって、 Φ は加群の層の同型を与える。

系 5.50.6. 掛け算から定義される写像により、次の加群の層としての同型が得られる。

$$\mathcal{F} \cong \mathcal{A}$$
.

もちろん、環としては両辺は全く異なるわけだが、cohomologyを計算するにはさしあたってこれで十分である。No.055 にその結果が陳述してある。

5.52. B **の構造.** この節は手直しが必要である。

Bの構造を述べておかねばならない。基本的には正規順序 (normal ordering) に合わせてならび変えるだけなのであるが、

- (1) 必要以上に環のサイズが減っていないこと。
- (2) 正規順序に並び替える際に C が現れるが、C 自体が μ_0 という若干複雑な元で置き換えられて、また新たな並び替えが必要になること。

に注意が必要である。

以下、添字 i は 0 から n まで、 j は 1 から n まで動くことにする。 たとえば $X_i = \{X_0, X_1, \dots, X_n\}$ である。

環 A や B の生成元と関係式はかなり簡単にわかる。サイズが減らないのを調べるにはそれらの環の正則表現にあたるおのを実際に構成して見せるのが定跡ではあるが、それは面倒なので、扱う環の推移に注意しながら、既存の Weyl 環等の構造論を使うことにする。

_

- (1) WC $_{n+1}=\mathbb{k}_2[X_{\mathbb{i}},\bar{X}_{\mathbb{i}},E_{\mathbb{i}},\bar{E}_{\mathbb{i}},C]$ から始める。これは \mathbb{k}_2 上 free であり、 \mathbb{k}_2 上の 2n+3 変数可換多項式環上の微分形式の全体 のなす環とサイズが同じである。(既知の一般論) もっと具体的 には、Spec $\mathbb{k}[X_0^p,\ldots,X_n^p,\bar{X}_0^p,\ldots,\bar{X}_n^p,C^p]$ 上の rank $p^{2n+3}2^{2n+2}$ の locally free sheaf と対応する加群である。
- (2) $(WC_{n+1}[X_0^{-p}])_0 = \mathbb{k}_2[x_{j}, e_{i}, e'_{i}, x'_{j}, x'_{0}, C] \cong WC_{n,n+1}[x'_{0}]$ この環は \mathbb{A}^{2n+2} 上の層 WC_{n+1} を \mathbb{G}_m の "(1,-1)"-作用で割ったものを $U^{\heartsuit} = \{X_0 \neq 0\}$ に制限した層に対応したものである。)注意点:
 - (a) X_0^{-p} を付け加えることと X_0^{-1} を付け加えることは結果的 に同じことだが、 X_0^{-p} は center の元なのでこちらのほう が議論が易しい。
 - (b) $x'_0 = X_0 \bar{X}_0$ は 0 に関する degree \deg_0 の hC 倍である。

$$[x'_0, \xi] = hC \deg_0(\xi)\xi$$
 $(\forall \xi \in WC[X_0^{-p}].)$

言い換えると、

$$x_0'\xi = \xi(x_0' + hC \deg_0(\xi)) \qquad (\forall \xi \in WC[X_0^{-p}].)$$

である。ただし dego は以下で決まるような次数付け。

変数:
$$X_0$$
 X_j X_0 X_j E_i E_i C \deg_0 : 1 0 -1 0 0 0 0

この交換関係により、 x_0' 変数はすべて項の後ろに持っていくことができ、 $\mathrm{WC}_{n,n+1}[x_0']$ のサイズは $\mathbbm{k}_2[x_0']$ 上の 2n+1 変数の多項式環上の 2n+2 個の生成元からなる外積代数と同じサイズである。

(c) 変数変換:

(d) $\overline{\text{この時点で、B が O}^{(p)} \text{ L locally free }}$ rank がわかる。

$$x_{j}$$
 の分… p^{n}
 e_{i} の分… 2^{n+1}
 e'_{i} の分… 2^{n+1}
 x'_{j} の分… p^{n}
 x'_{0} の分… p
 C の 分… p
 G_{m} 不変の要求 $(*)...1/p$

total...
$$p^{2n}2^{2(n+1)} \cdot p$$

(*) 次数合わせのために x'_0 の冪で割らねばならぬ。その分。 ただし、

$$B = WC_{(0)} / (C^p - (\frac{1}{1 - h^{p-1}} \sum_i X_i^p \bar{X}_i^p))$$

(3) (WC_n[X_0^{-p}, \bar{X}_0^{-p}])₍₀₎ を考える。

(a) e_i', x_j' を \bar{e}_i, \bar{x}_j に ($x_0', (x_0')^{-1}$ の存在を前提に) 変数変換する。 (U_{00} 上で考える。) $e_i' = X_0 \bar{E}_i = X_0 \bar{X}_0 \bar{X}_0^{-1} \bar{E}_i = (x_0') \bar{e}_i, x_i' = X_0 \bar{X}_i = X_0 \bar{X}_0 \bar{X}_0^{-1} \bar{X}_i = (x_0') \bar{x}_i,$

(b) x_0' を後ろに持っていく。(C が出てくる。) 項順序を $x_j < e_j < e_0 < \bar{e}_0 < \bar{e}_j < \bar{x}_j < x_0' < C$ にとる。 変数: x_j e_j e_0 \bar{e}_0 \bar{e}_j \bar{x}_j x_0' C deg₀: -1 -1 1 1 1 0 0

(c) $(WC_n[X_0^{-p}, \bar{X}_0^{-p}])_{(0)} = \mathbb{k}[x_{j}, e_{i}, \bar{e}_{i}, \bar{x}_{j}, x'_0, (x'_0)^{-1}, C]$

(4) total degree が 0 の部分を考える。 x'_0 と他の部分との交換関係、C が center に属することから、 x'_0 , C の部分を真ん中に移動させ、一旦 X_0^{-p} , \bar{X}_0^{-p} の高い冪を共通分母を取ってから normal ordering にならべかえることにより、次を得る。

$$(WC_n[X_0^{-p}, \bar{X}_0^{-p}])_{(0,0)} = \sum_t \mathbb{k}_1[k, x_{j}, e_{i}] \cdot X_0^{-t} \bar{X}_0^{-t} C^t \cdot \mathbb{k}_1[k, \bar{e}_{i}, \bar{x}_{j}, x_0', (x_0')^{-1}]$$

 $5.53.\ C$ の消去. この節も手直しが必要である。 $52\ \text{で述べたように B}\ \text{は}\ (\Omega)^{\mathbb{G}_m} - (\Omega)^{\mathbb{G}_m}\ 両側加群として$

$$(X_0^{-p}\bar{X}_0^{-p})^k(x_0')^lC^m$$

(-2kp+l+m=0) のかたちの元で生成される。 これらは \bar{X}_0 と X_0 との交換関係を用いて $X_0^{-m}\bar{X}_0^{-m}C^m=X_0^{-m}C^m\bar{X}_0^{-m}$ の \mathbbm{k}_1 上の線型結合で書くことができる。 \mathcal{A} や \mathcal{B} においては、 $\mu_1=0$ なので、 $C=\mu_0$ なのだが、

(誤り)
$$X_0^{-s} C^s \bar{X}_0^{-s} = X_0^{-s} \mu_0^s \bar{X}_0^{-s}$$

とやってはいけない。 (μ_1) は A や B のイデアルではあるが、 $WC_{(0)}$ のイデアルではないから。

$$\xi_s = X_0^{-s} \bar{X}_0^{-s} C^s$$

とおく。 $C \equiv \mu_0$ なる関係式を採用する。のだが、精密化して、

$$\mu_{1,j} = \mu_1 - jkhC = (1 - jkh)C + \mu_0$$

を考える。以下、便利のため、

$$\mu_1^{[j]} = \prod_{l=0}^{j-1} (\mu_1 - lkhC)$$

とおく。 $\mathfrak B$ においては $\mu_1^{[p-1]}=k^p\sum_i X_i^p \bar X_i^p$ であることに注意しておく。

$$\begin{split} \xi_s &= X_0^{-s} \bar{X}_0^{-s} \\ &= X_0^{-s} \bar{X}_0^{-s} (1 - jkh)^{-1} (\mu_{1,j} - \mu_0) C^{s-1} \\ &\equiv -(1 - jkh)^{-1} X_0^{-s} \bar{X}_0^{-s} \mu_0 C^{s-1} \\ &= -(1 - jkh)^{-1} X_0^{-s} (\mu_0 \pm khsC) \bar{X}_0^{-s} C^{s-1} \\ &= -(1 - jkh)^{-1} (\pm) khs \xi_s - (1 - jkh)^{-1} X_0^{-s} \mu_0 \bar{X}_0^{-s} C^{s-1} \end{split}$$

さて、k は位相的に無限小であると仮定したので、(1+skh) は $s\in\mathbb{Z}$ に対して可逆である。

他方、

$$X_0^{-(s-1)}(X_0^{-1}\mu_0\bar{X}_0^{(-1)})\bar{X}_0^{-(s-1)}C^{s-1}$$

$$=X_0^{-(s-1)}(k(1+\sum_j x_j\bar{x}_j)+\sum_i e_i\bar{e}_i)\bar{X}_0^{-(s-1)}C^{s-1}$$

$$=k(X_0^{-(s-1)}\bar{X}_0^{-(s-1)}C^{s-1}+\sum_j x_jX_0^{-(s-1)}\bar{X}_0^{-(s-1)}C^{s-1}\bar{x}_j)$$

$$+\sum_i e_iX_0^{-(s-1)}\bar{X}_0^{-(s-1)}C^{s-1}\bar{e}_i$$

$$=k(\xi_{s-1}+\sum_i x_j\xi_{s-1}\bar{x}_j)+\sum_i e_i\xi_{s-1}\bar{e}_i$$

最後の等式は、交換関係を用いて外の X_0, \bar{X}_0 を内側に持ってきてから、該当する部分を ξ と書き換えた。

$$\mathcal{B} = \mathcal{C} + \mathcal{B} \cdot \mu_{1,i}$$

$$\mathcal{B} = \mathcal{C} + \mathcal{B} \cdot \mu_{1,0}$$

$$= \mathcal{C} + \mathcal{C}\mu_{1,0} + \mathcal{B} \cdot \mu_{1,0}$$

$$= \mathcal{C} + (\mathcal{C}\mu_{1,0} + \mathcal{B}\mu_{1,1}) \cdot \mu_{1,0}$$

$$= \mathcal{C} + \mathcal{C}\mu_{1,0} + \mathcal{B} \cdot \mu_{1,1}\mu_{1,0}$$

$$= \mathcal{C} + \mathcal{C}\mu_{1,0} + (\mathcal{C} + \mathcal{B}\mu_{1,2}) \cdot \mu_{1,1}\mu_{1,0}$$

$$= \cdots =$$

$$= \sum_{j=0}^{p-1} \mathcal{C}\mu_1^{[j]} + k^p (\sum_i X_i^p \bar{X}_i^p) \mathcal{B}$$

中山の補題により、

$$\mathcal{B} = \sum_{i=0}^{p-1} \mathcal{C}\mu_1^{[j]}$$

5.55. $\bar{\partial}$ -cohomology (有限版). ここはもう一度最初から考えてみないといけない。1 から、いいえ、0 から。

ひきつづき、正標数で、「有限の場合」について議論しよう。 $\mathbb{k}_1 = \mathbb{k}[h]$, $\mathbb{k}_2 = \mathbb{k}_1[[k]]$ であったことに注意する。A の加群構造を決定する際には、 \mathbb{k}_2 -加群としての構造を見ていたわけであるが、 $\bar{\partial}$ -complex としての構造を見る際には、k を係数環の元と見るのをやめて、 \mathbb{k}_1 -係数で議論する。これは k の form としての degree が (1,1) であるためである。

定理 5.55.1. 無限小の場合について考える。このとき、

(1) 加群の層として $A \cong \pi_* \Omega^{\mathbb{G}_m} \boxtimes \pi_* \Omega^{\mathbb{G}_m}$ である。 $\{X_0 \neq 0 \& \bar{X}_0 \neq 0\}$ においては、次のように書いたほうがわかりいいかもしれない。

$$\mathcal{A} \cong \Omega_{\mathbb{P}^n}[\partial \log X_0] \boxtimes \bar{\Omega}_{\mathbb{P}^n}[\bar{\partial} \log \bar{X}_0]$$

以下ではこの形で書く。

(2) $\bar{\partial}$ -complex $\& U \subset$

$$(\mathcal{A}, \bar{\partial}) (\cong (\pi_* \Omega^{\mathbb{G}_m}, -k \operatorname{Int}_{\sum_i X_i \partial / \partial X_i}) \boxtimes (\pi_* \Omega^{\mathbb{G}_m}, \bar{\partial}) \qquad (\operatorname{Int} \ \mathrm{は内部微分}))$$

$$\cong (\Omega_{\mathbb{P}^n} [\partial \log X_0], \bar{\partial}) \boxtimes (\bar{\Omega}_{\mathbb{P}^n} [\bar{\partial} \log \bar{X}_0], \bar{\partial})$$

である。ただし、(通常の考えと違って、) 前変数の $\bar{\partial}$ は

$$\bar{\partial}\partial \log X_0 = -k$$

を満たすような Ω_ℙn-線形作用素である。

(3) \mathbb{k}_1 上の $\bar{\partial}$ -complex として、

$$(\Omega_{\mathbb{P}^n}[\partial \log X_0], \bar{\partial}) \boxtimes (\bar{\Omega}_{\mathbb{P}^n}[\bar{\partial} \log \bar{X}_0], \bar{\partial})$$

は

$$(\Omega_{\mathbb{P}^n},0)\boxtimes(\bar{\Omega}_{\mathbb{P}^n,\mathrm{sparse}}[\bar{\partial}\log\bar{X}_0],0)$$

と導来同値である。

(4) ∂ に関しても同様である。

Proof. (1) この同型は正規順序により決まるので、 $\partial, \bar{\partial}$ 作用素を吟味するのはやさしい。まず A で吟味し、その結果を上の同型で送り込めばよいのだ。

(2) 右側、第二変数については $\bar{\partial}$ は通常の外微分の意味を持ち、左側、第一変数については、

$$\bar{\partial} = \operatorname{Int}_{\sum_i X_i \bar{\partial}/\bar{\partial} X_i}$$

が成り立つ。

 $\sum_i X_i \bar{\partial}/\bar{\partial} X_i$ は Euler operator と呼ばれるものと等しいことにも注意しておこう。とくにこれは座標不変である。(2) の証明は、

$$\bar{\partial}x_i = 0, \quad (\bar{\partial}(\partial x_i)) = -\partial\bar{\partial}x_i = 0$$

である (∂ と $\bar{\partial}$ の間の交換子は deg 作用素であることに注意) ことと、 $\bar{\partial}e_0 = -k$ とからすぐにわかる。

(3) 前変数のコホモロジーについて考えよう。 $\xi = \alpha + \beta \bar{\partial} \log(X_0)$ $(\alpha, \beta \in \Omega_{\mathbb{P}^n})$ に対して、 $\bar{\partial} \xi = -k\beta$ であるから、cocycle は $\mathbb{k}_1[k] \cdot \Omega_{\mathbb{P}^n}$ であり、coboundary は $k\Omega_{\mathbb{P}^n}$ である。

結局、前変数の complex は $(\Omega_{\mathbb{P}^n},0)$ と quasi isom であることがわかる。

後変数について考えよう。Cartier operator は $\bar{X}_0^{-1}\bar{\partial}\bar{X}_0$ を不変にすることから、Deline-Illusie 理論は全くこの場合にも同じように使えて、後変数の complex は、 $(\bar{\Omega}_{\mathbb{P}^n}^{(p)} + \bar{\Omega}_{\mathbb{P}^n,\mathrm{sparse}}\bar{\partial}\log(X_0),0)$ と quasi isom である。

この complex は cohomology 環は cup 積に関して super 可換であるはずである。したがって、cohomology に関しては可換理論と全く変わるところはない。

6. ホモロジー代数的な商 (HIGHER GEOMETRY)

6.60. **小まとめ.** 2017 年 12 月 19 日現在の進め方の方針は次の通り。

- (1) 斉次 Weyl-Clifford algebra の stereo action を用いて加群として $\mathbb{P}^n \times \mathbb{P}^n$ 上の層 WC を作る。この部分は標数 0 でもできる。
- (2) $O^{(p)}$ 加群と見て WC を sheaf of algebra と捉えることもできる。
- (3) moment map で割る。
- (4) 割るのは割るのだが、(ホモロジー代数の意味での)「complex」 とみる。(割ったもの (商空間) の resolution を与えることに当 たる。) つまり、 $We \stackrel{\mu \mapsto}{\rightarrow} We$

注意:

(1)

$$\begin{split} &\bar{X}_0^{-1} X_0^{-1} \\ = &\bar{X}_0^{-p} (\bar{X}_0^{p-1} X_0^{p-1}) \bar{X}_0^{-p} \end{split}$$

のような計算をするため、正標数にしないと normal ordering を実行できない。

10. 公式

10.100. 公式 (無限小の場合).

$$[\bar{X}_i, X_j] = hC\delta_{ij}$$
 (Kronecker's delta),
 $[\bar{X}_i, \bar{X}_i] = 0,$ $[X_i, X_j] = 0.$ $(i, j = 0, 1, 2, \dots, n).$

C は中心的元である。

$$[\bar{E}_i, E_j]_+ = Chk\delta_{ij}$$

 $[\bar{E}_i, \bar{E}_j]_+ = 0, \qquad [E_i, E_j]_+ = 0$

 $(X_i\bar{X}_i)^p - (hC)^{p-1}X_i\bar{X}_i = X_i^p\bar{X}_i^p$ $(i = 0, 1, 2, \dots, n).$

 $\mu^p_{(k,0)} + (khC)^{p-1}\mu_{(k,0)} = \sum_i k^p X_i^p \bar{X}_i^p.$

10.101. 特別な元. 次の元は本文中に何度も現れる。

$$\begin{split} \varepsilon &= \partial \sum_{i} X_{i} \bar{X}_{i} = \sum_{i} \bar{X}_{i} E_{i} \\ \bar{\varepsilon} &= \bar{\partial} \sum_{i} X_{i} \bar{X}_{i} = \sum_{i} X_{i} \bar{E}_{i} \\ \partial &= \frac{1}{hC} \operatorname{ad} \varepsilon \\ \bar{\partial} &= -\frac{1}{hC} \operatorname{ad} \bar{\varepsilon} \end{split}$$

 $\partial, \bar{\partial}$ は odd な微分作用素であり、生成元への作用は次のように与えられる。

•	k	X_i	∂X_i	\bar{X}_i	$\bar{\partial} \bar{X}_i$
∂∙	0	∂X_i	0	0	$k\bar{X}_i$
∂∙	0	0	$-kX_i$	$\bar{\partial} X_i$	0

 μ_0, μ_1 を次のように定義する。

$$\mu_0 = \mu_{(k,0)} = k \sum_{i} X_i \bar{X}_i + \sum_{i} E_i \bar{E}_i$$

$$\mu_1 = k \sum_{i} X_i \bar{X}_i + \sum_{i} E_i \bar{E}_i - C$$

$$\begin{array}{l} \mu_{0}^{p}-(khC)^{p-1}\mu_{0}=k^{p}\sum_{i}X_{i}^{p}\bar{X}_{i}^{p}.\\ \prod_{j=0}^{p-1}(\mu_{0}-jkhC)=k^{p}\sum_{i}X_{i}^{p}\bar{X}_{i}^{p}\\ \partial\bar{\partial}\sum_{i}X_{i}\bar{X}_{i}=k\sum_{i}X_{i}\bar{X}_{i}+\sum_{i}E_{i}\bar{E}_{i}=\mu_{0} \end{array}$$

$$\begin{split} [\mu_0,\bar{X}_0] = [X_0\bar{X}_0,\bar{X}_0] = [X_0,\bar{X}_0]\bar{X}_0 = -Ch \ \&\ \lambda, \\ \mu_0\bar{X}_0 = \bar{X}_0(\mu_0-Ch) \end{split}$$

一般の一変数関数 f に対して

$$f(\mu_0)\bar{X}_0 = \bar{X}_0(\mu_0 - Ch)$$

故に一般の整数 s に対して、

$$f(\mu_0)\bar{X}_0^s = \bar{X}_0^s(\mu_0 - sCh)$$

$$x_i \stackrel{\text{def}}{=} X_i X_0^{-1} = X_0^{-1} X_i, \quad x_i' \stackrel{\text{def}}{=} X_0 \bar{X}_i, \quad e_i \stackrel{\text{def}}{=} E_i X_0^{-1} = X_0^{-1} E_i, \quad e_i' \stackrel{\text{def}}{=} X_0 \bar{E}_i = \bar{E}_i X_0.$$

$$\bar{x}_i = \bar{X}_i \bar{X}_0^{-1} = \bar{X}_0^{-1} \bar{X}_i = (x_0')^{-1} x_i', \quad \bar{e}_i = \bar{E}_i \bar{X}_0^{-1} = \bar{X}_0^{-1} \bar{E}_i = (x_0')^{-1} e_i'.$$

10.110. 公式 (有限の場合).

$$[\bar{X}_i, X_j] = hC\delta_{ij}$$
 (Kronecker's delta),
 $[\bar{X}_i, \bar{X}_i] = 0,$ $[X_i, X_j] = 0.$ $(i, j = 0, 1, 2, \dots, n).$

C は中心的元である。

$$[\bar{E}_i, E_j]_+ = Chk\delta_{ij}$$

$$[\bar{E}_i, \bar{E}_j]_+ = 0, \qquad [E_i, E_j]_+ = 0$$

$$(X_i \bar{X}_i)^p - (hC)^{p-1} X_i \bar{X}_i = X_i^p \bar{X}_i^p \qquad (i = 0, 1, 2, \dots, n).$$

$$(E_i \bar{E}_i)^2 = -(khC) E_i \bar{E}_i = 0. \qquad (i = 0, 1, 2, \dots, n).$$

$$(E_i \bar{E}_i)^p - (khC)^{p-1} E_i \bar{E}_i = 0. \qquad (i = 0, 1, 2, \dots, n).$$

10.110.1. 特別な元. 次の元は本文中に何度も現れる。

$$\begin{split} \varepsilon &= \partial \sum_{i} X_{i} \bar{X}_{i} = \sum_{i} \bar{X}_{i} E_{i} \\ \bar{\varepsilon} &= \bar{\partial} \sum_{i} X_{i} \bar{X}_{i} = \sum_{i} X_{i} \bar{E}_{i} \\ \partial &= \frac{1}{hC} \operatorname{ad} \varepsilon \\ \bar{\partial} &= -\frac{1}{hC} \operatorname{ad} \bar{\varepsilon} \end{split}$$

 $\partial, \bar{\partial}$ は odd な微分作用素であり、生成元への作用は次のように与えられる。

•	k	X_i	∂X_i	\bar{X}_i	$\partial \bar{X}_i$
∂∙	0	∂X_i	0	0	kX_i
∂∙	0	0	$-kX_i$	$\overline{\partial X_i}$	0

有限の場合以下、書きかけの部分が多い。

 μ, μ_0, μ_1 を次のように定義する。

$$\mu = \mu_0 = \sum_{i} X_i \bar{X}_i + \frac{1}{k} \sum_{i} E_i \bar{E}_i$$

$$\mu_1 = \sum_{i} X_i \bar{X}_i + \frac{1}{k} \sum_{i} E_i \bar{E}_i - C$$

$$\partial \bar{\partial} \sum_{i} X_{i} \bar{X}_{i} = k \sum_{i} X_{i} \bar{X}_{i} + \sum_{i} E_{i} \bar{E}_{i} = k \mu_{0}$$

10.110.2. The element m. Let us put $m = RC - \sum X_i \bar{X}_i$. It plays an important role in our calculation.

10.110.3. $m^{[l]}$, the falling factorial power of m. For any non-negative integer l, we denote by $m^{[l]}$ the following "generalized factorial power of m":

$$m^{[l]} = m(m - Ch)(m - 2Ch)\dots(m - (l - 1)Ch).$$

10.110.4. formula of m. In this section, we do some calculations on mneeded for our later use. The result is summarized in the following lemma.

補題 **10.110.1**. We have:

- (1) $\bar{\partial}m = -\varepsilon'$.
- (2) $[m, \varepsilon'] = -Ch\varepsilon'$.
- (3) $m\varepsilon' = \varepsilon'(m Ch)$. (4) $\bar{\partial}(m^{[l]}) = -lm^{[l-1]}\varepsilon'$ (l = 0, 1, 2, 3, ...).

Proof. (1) Knowing that $m = \frac{1}{k} \sum E_i E_i'$, we have

$$\bar{\partial}m = \frac{1}{k} \sum_{i} (-kX_{i}E'_{i})$$

$$= -\sum_{i} X_{i}E'_{i}$$

$$= -\varepsilon'.$$

(2):

$$[m, \varepsilon'] = \frac{1}{k} ([\sum_{i} E_{i} \bar{E}_{i}, \varepsilon'])$$

$$= -\frac{1}{k} \sum_{i} [E_{i}, \varepsilon'] \bar{E}_{i}$$

$$= -\frac{1}{k} \sum_{i} Chk X_{i} \bar{E}_{i}$$

$$= -Ch\varepsilon'$$

- (3) is a trivial consequence of (2).
- (4): Induction in l. The case l = 0 is trivial. The case l = 1 is treated in (1).

$$\begin{split} \bar{\partial} m^{[l]} = & \bar{\partial} (m^{[l-1]}(m-(l-1)Ch)) \\ = & \bar{\partial} (m^{[l-1]}) \cdot (m-(l-1)Ch) + m^{[l-1]} \bar{\partial} m \qquad \text{(Leibniz rule)} \\ = & - (l-1)m^{[l-2]} \varepsilon' \cdot (m-(l-1)Ch) - m^{[l-1]} \varepsilon' \qquad \text{(Induction hypothesis)}. \\ = & - (l-1)m^{[l-2]} \cdot (m-(l-2)Ch)\varepsilon' - m^{[l-1]} \varepsilon' \qquad \text{(Consequence of (3))}. \\ = & - (l-1)m^{[l-1]} \varepsilon' - m^{[l-1]} \varepsilon' \qquad \text{(by definition of } m^{[\bullet]}) \\ = & - lm^{[l-1]} \varepsilon' \end{split}$$

10.110.5. C, x'_0 .

$$X_{j}\bar{X}_{j} = X_{0}^{-1}X_{j}\bar{X}_{0}^{-1}\bar{X}_{j}\bar{X}_{0}X_{0}$$
$$= x_{j}\bar{x}_{j}\bar{X}_{0}X_{0} = x_{j}\bar{x}_{j}(X_{0}\bar{X}_{0} + hC)$$

同様に:

$$E_j\bar{E}_j = e_j\bar{e}_j(X_0\bar{X}_0 + hC).$$

$$C = \sum_{i} X_{i} \bar{X}_{i} + \frac{1}{k} \sum_{i} E_{i} \bar{E}_{i}$$

$$= X_{0} \bar{X}_{0} + (\sum_{j} x_{j} \bar{x}_{j} + \frac{1}{k} \sum_{i} e_{i} \bar{e}_{i}) \bar{X}_{0} X_{0}$$

$$= X_{0} \bar{X}_{0} + (\sum_{j} x_{j} \bar{x}_{j} + \frac{1}{k} \sum_{i} e_{i} \bar{e}_{i}) (X_{0} \bar{X}_{0} + hC)$$

$$x_i \stackrel{\text{def}}{=} X_i X_0^{-1} = X_0^{-1} X_i, \quad x_i' \stackrel{\text{def}}{=} X_0 \bar{X}_i, \quad e_i \stackrel{\text{def}}{=} E_i X_0^{-1} = X_0^{-1} E_i, \quad e_i' \stackrel{\text{def}}{=} X_0 \bar{E}_i = \bar{E}_i X_0.$$

$$\bar{x}_i = \bar{X}_i \bar{X}_0^{-1} = \bar{X}_0^{-1} \bar{X}_i = (x_0')^{-1} x_i', \quad \bar{e}_i = \bar{E}_i \bar{X}_0^{-1} = \bar{X}_0^{-1} \bar{E}_i = (x_0')^{-1} e_i'.$$
10.110.6. 微分.

$$(WC_0/(\mu_1))_0) = \mathbb{k}_1 \langle k, x_i, \partial x_i, e_0, \omega_0, \bar{e}_0, \bar{\partial} x_i, x_i \rangle$$

$$\partial x_{i} = (\partial X_{i}) X_{0}^{-1} - X_{i} X_{0}^{-2} \partial X_{0} = e_{i} - x_{i} e_{0}$$

$$e_{i} = \partial x_{i} + x_{i} e_{0}$$