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NON-COMMUTATIVE PROJECTIVE SPACE AS A
NON-COMMUTATIVE KÄHLER MANIFOLD

YOSHIFUMI TSUCHIMOTO

Abstract. We give a non-commutative counterpart of the com-
plex projective space with the Fubini metric. Some cohomologies
and a spectral sequence about them are computed.
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1. Introduction

Complex projective space Pn

C has a Fubini Study metric and the

corresponding Kähler structure therefore gives a structure of a sym-
plectic manifold. In this paper we make its non-commutative coun-
terpart. We also decorate it with some super odd variables, so that
we may talk about “differential forms” on it. What we get is a sheaf
A of modules over Pn × Pn which is a quotient of another sheaf WC

which corresponds, in the usual manner, to the algebra WC which is
obtained as a tensor product of a Weyl algebra and a Clifford algebra.
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The whole story was developed according to the theory of “Marsden-
Weinstein” quotient as a guide, and we found out that the sheaf WC

is interesting in its own right, even without taking the quotient. Each
of our sheaves WC and A has two odd derivations d and d̄, making
itself a double complex. We have computed some cohomologies of the
double complexes, and by doing so we are developing something of a
non-commutative Dobleault theory. Our “non-commutative Dolbeault
complex” (A, d, d̄) has something different than the usual ones, to keep
ourselves well-defined in our setups. And it seems that the complex
has an interesting duality property.

Let us describe the story in more detail, using a framework of alge-
braic geometry a little more.

First of all, we need to regard Pn

C as a variety over R. In other words,

we consider the Weil scalar restriction ResC/R Pn. In addition to that,

we consider its scalar extension Pn×Pn = (ResC/R Pn×RC). In short,
we employ holomorphic coordinates ‘z’and the anti-holomorphic coor-
dinates ‘z̄’ as the coordinates of Pn × Pn: They are complex conjugate
on Pn, but we regard them as independent variables on ResC/R Pn.

To construct the non-commutative counter-part of ResC/R Pn, we
use the theory of Marsden-Weinstein quotient.

To make ourselves clearer, we briefly explain with a simple proto-
type in section 2. By taking the Marsden-Weinstein quotient of a Weyl
algebra we obtain an algebra Aproto = (Weyl)(0)/(µ). Aproto is isomor-
phic to U(gl)/(µ) which may be identified with a twisted differential
operator on Pn. The object had been well studied within the theory of
“Localization of g-modules”[1].

In section 3, we are going to add two structures to this object and
enrich the story.

One is the compactification.
Aproto is certainly “compact” in the Pn direction (“position-variables”),

but is is not “compact” in the fibers(“momentum-variables”). To com-
pactify it we would need Pn for both directions, which would arise
Pn × Pn, with non commutative structure. By thinking in the case of
the positive characteristic, these situations can be handled visually.

The other is adjunction of super variables. We add anti-commuting
variables to the Weyl algebra and move to the Weyl Clifford algebra
WC. We develop the super version of Marsden-Weinstein quotient.
The bare Marsden-Weinstein quotient itself are too rough, we supple-
ment it by using the tools of homological algebras.

In our construction, there seems to be, at first glance, some options
such as choosing the right derivations d, d̄ and the moment map. But
the fact is, that considerable part of our choice is inevitable. It will be
explained in section 3.

We obtain, as a result of the Marsden-Weinstein quotient, a sheaf A
of modules over Pn × Pn. It is a quotient of a sheaf WC of modules.
To make non-commutativity somewhat easier to handle, we are mainly
working with the case where the base field k is of characteristic p > 0.
(The whole story would then be applied to the case of characteristic 0
by using a technique of ultra-filter limits [7],[8],[2],[3].) For instance,
in characteristic p > 0 case, we may treat the sheaves A and WC as

algebras over O
(p)
Pn×Pn .
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As cohomologies are determined only from the module structures, It
is possible to calculate some of them (Theorem 6.1) by using theories
in the usual commutative algebraic geometry. In particular, we make
full use of the Deligne-Illusie-Cartier theory. We give a small account
of the result of the theory in section 5.2. In a sense, we may also
regard our theory as a “non-commutative Dolbeault version ” of the
theory. It seems that our theory of dealing with non-commutativity
by passing to positive characteristic case gets along very well with the
Deligne-Illusie-Cartier theory.

On the other hand, we also pay homage to the non-commutative
structure, holomorphic- and anti-holomorphic- differential d, d̄ are cho-
sen so that it extends to the non-commutative case as discussed in
section 3. In particular a degeneracy of a special spectral sequence is
observed (Corollary 6.2). As our theory has a z ↔ z̄ -symmetry, it
should be an evidence of some kind of duality happening here.

So far, we need some more work to understand general projective
varieties by our strategy. We are expecting to obtain a result which
corresponds, in the Hodge theory, to a something which look like an
isomorphism H(l,m) ∼= H̄m,l.

Our method here has the advantage of being “visible”. It can easily
connect to an existent commutative theories and so on.

2. prototype

2.1. The base problem. Since our problem is fairly complicated, in
this section we describe a “prototype” of our theory, a story without
much decorations.

Let k1 be a commutative ring, h ∈ k1.
We start with (in-homogeneous) Weyl algebra

weyln+1 = k⟨x0, . . . xn, x̄0, . . . x̄n⟩/(ccr)
(where ccr is the “canonical commutation relation) [x̄i, xj] = hδij, [xi, xj] =
0, [x̄i, x̄j] = 0. )

Let us take a submodule weyl(0) of weyln+1 which consists of elements
of signed degree 0.

weyl(0) = k⟨x0, . . . xn, x̄0, . . . x̄n⟩(0) = k⟨{xix̄j; i, j ∈ {0, 1, 2, . . . , n}}⟩,
where the signed degree sdeg is defined as follows.

variable : x x̄

sdeg: 1 −1

Let us cut it at “places where moment map equals 0” that is,
∑

i xix̄i =
R. We get an algebra A:

A = weyl(0) /(
∑
i

xix̄i −R)

The algebra is isomorphic to a quotient ring of the universal enveloping
algebra U(gln+1) of the Lie algebra gln+1. Indeed, it is easy to verify
that the elements {xix̄j} satisfy the commutation relation of gl. A is
deeply related to the idea of “localization of the gl-modules”.

When the characteristic of over base ring k1 is a positive prime p > 0,
Then the center of our algebra A is equal to

k[{xp
i x̄

p
j ; i, j = 0, . . . , n}]/(relation)
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with the relation ∑
i

xp
i x̄

p
i = Rp(1− hp−1).

Fact 2.1.1. A = weyl(0) /(
∑

i xix̄i − R) defines, on an open subset of
Pn × Pn defined by

{[a0 : a1 : . . . an], [ā0 : ā1 : . . . ān];
∑
i

aiāi ̸= 0},

a coherent sheaf of algebras A. Each of its fibers is isomorphic to the
full matrix algebra Mpn .

base problem� �
Extend the Fact 2.1.1 and construct a non-commutative version of
ResC/R Pn ∼= Pn × Pn. In particular, keep in mind to:

• take the ”completion” of the Spec of the non-uniform Weil
ring.

• make take ”non-commutative version of differential form”
using super variables.� �

2.2. Marsden-Weinstein quotient. The word ”Marsden-Weinstein
quotient” itself is borrowed from symplectic geometry. For the reader
who are unfamiliar with the topic, As things in internets are not per-
manent, we refer to [6] for a good reference.

For a ring W , we would like to “restrict” it by its subset S. When W
is commutative, it is done by considering the quotient ring W/(W · S)
of the ring W by its ideal W · S generated by S.

When our ring W is non-commutative, it is possible to think of the
idea generated by S, But it is not always effective: W could be a simple
ring like our Weyl algebra. It is generally impossible to accurately
determine two variables at the same time according to the uncertainty
principle.

So we consider instead the left ideal J = W · S, and take a quotient
of the idealizer IW (J) = {a ∈ W ; Ja ⊂ J} by J : We may consider the
idealizer as a set of elements which are consistent with the restriction
S = 0. and regard the quotient IW (J)/J as a “restriction of W by S”.
Suppose that an algebra group G is acting on a ringW . The quotient

of W with G (called Marsden-Weinstein quotient) is actually obtained
with the concept of ”restriction” as above. Let’s show below that the
Marsden-Weinstein quotient can be seen as W ’s ”restriction” of W by
moment map mu.

Let us put it in another way. We may guess, as we do in the com-
mutative theory, that the G-orbit of Spec(W ) corresponds to the ring
of G-invariants in W :

Spec(W )/G “=” Spec(WG)

We need to consider another thing. In exchange for losing some coor-
dinate functions (stop deciding where in the G-orbit we are), we may
determine values of some elements (“ momentum ”). In other words:
there exist elements {µ} ∈ WG such that, the ring which we really
want should look like:

Spec(W )//G = µ−1(0) ⊂ Spec(WG)

WG = IW (J), J = W · ({µ})
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We have in summary:
summary� �

• For an action of a group to a non-commutative ring we may
find some moment maps.

• By using a “restriction” by moment maps we obtain a quo-
tient space of the spectrum of the algebra.� �

A supplementary note on symplectic quotient.
For an action of a real Lie group G on a complex Kähler manifold

X which preserves the Kähler form, we have

X/GC ∼= X//G (GC : complexification of G).

We have in particular

Pn(C) ∼= An+1

C /Gm
∼= An+1//S1 = µ−1(0)/S1.

We are going to make a “non-commutative version” with extra “su-
per variables”. As we have explained above, The choice of the moment
map corresponds to the choice of the action of S1, or, in other words,
the choice of Z -grading. Since it should match with the story of P n,
above, Two choices are possible.

(1)
∑

i XiX̄i. It corresponds to the grading

xi x̄i ei ēi

1 -1 0 0

(2) k
∑

i XiX̄i +
∑

i EiĒi. It corresponds to the grading

xi x̄i ei ēi

1 -1 1 -1

We shall compare these in section 4.2.

2.3. homogeneous Weyl-Clifford algebra.

2.3.1. Base field k, base ring k1. We fix a base field k and its extension
commutative ring k1. We choose a special elements h ∈ k1 By putting
this way, we can quickly return to the commutative case by specializing
h to 0. In later sections, in many case k will be a field of characteristic
p > 0, and k1 will be a ring k[h, 1

1−hp−1 ]. To avoid some difficult
problems, we always assume p is sufficiently large. (Usually p > 2n,
the dimension of our projective space, would be enough.)

2.3.2. Definition of homogeneous Weyl-Clifford algebra.

Definition 2.3.1. We define homogeneous Weyl algebra as follows

Weyl
(h,C)
n+1 = k1⟨C,X0, X1, . . . , Xn, X̄0, X̄1, . . . , X̄n⟩

where the generatesXi, X̄j satisfy the following canonical commutation
relations(CCR):

[X̄i, Xj] = hCδij (Kronecker’s delta),

[X̄i, X̄i] = 0, [Xi, Xj] = 0. (i, j = 0, 1, 2, . . . , n).

C is a central element.
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Definition 2.3.2. We define homogeneous Clifford algebra as follows

Cliff
(h,C,k)
n+1 = k1⟨C,E0, . . . , En, Ē0, . . . , Ēn⟩

where the generators E, Ē satisfy the following anti-commutation rela-
tions (CAR):

[Ēi, Ej]+ = Chkδij

[Ēi, Ēj]+ = 0, [Ei, Ej]+ = 0

C again is a central element.

Definition 2.3.3. For any non-negative integers n,m, we define ho-
mogeneous Weyl-Clifford algebra as the following tensor product.

WC
(h,C,k)
n+1,m+1 = Weyl

(h,C)
n+1 ⊗k1[k,C] Cliff

(h,C,k)
m+1 .

when n = m, for the sake of simplicity, we write WC
(h,C,k)
n+1 = WC

(h,C,k)
n+1,n+1 .

By a (homogeneous version of) the well-known fact we have:

Proposition 2.3.4. Weyln+1 is a free module over k1[k, C] with a free
basis

{X i0
0 X i1

1 X i2
2 . . . X in

n | i1, . . . , in ∈ Z≥0}.
Cliffm+1 is a free module over k1[k, C] with a free basis

{Ej0
0 Ej1

1 Ej2
2 . . . Ejn

n | j1, . . . , jn ∈ {0, 1}}

It also follows that WCn,m and WCn are k1[k, C]-free modules.

2.3.3. WC as a super algebra. As with the algebra of the differential
forms, WCn+1 admits a structure of a super algebra by definingX, X̄, C
as even, and E, Ē as odd. Hereinafter, the symbol on WC is used as a
symbol as a super algebra. For example, bracket is a super commutator
and ad is a super adjoint:

ad(x)(y) = [x, y] = xy − (−1)x̂ŷyx

(where ?̂ denotes the signature of ?.)

2.3.4. Elements ε, ε̄ and derivations d, d̄. We define the elements ε, ε̄
in WCn+1 as follows.

ε =
∑
i

X̄iEi, ε̄ =
∑
i

XiĒi

We define odd derivations d, d̄ on WC as follows.

d =
1

hC
ad ε, d̄ = − 1

hC
ad ε̄

(where, as we have written in the last subsection, ad denotes the super
adjoint.) These are apparently operators on WC⊗k1[k,C]k1[k, C,

1
hC

],
and sends, generators X?, X̄?, C, E?, Ē? to elements in WC. They also
satisfy super Leibniz rule. We see therefore, by using the freeness 2.3.4,
that these define operators on WC.

We note also that

ε = d(
∑
i

XiX̄i), ε̄ = d̄(
∑
i

XiX̄i).
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For x ∈ WC,

[d, d̄](x) = (dd̄+ d̄d)(x) =
1

hC
adµ0(x) = −k sdeg(x) · x

where µ0 ∈ WC is defined as

µ0 = k
∑
i

XiX̄i +
∑
i

EiĒi.

sdeg is “signed degree (“number of the bar-ed variables”)” defined as
follows.

variable: X X̄ E Ē C

sdeg: 1 −1 1 -1 0

3. derivations,a moment map, and why we select them

3.1. derivations d, d̄. Let us put some assumptions and explain why
we use WC, d, d̄ as a non-commutative version of the ring of differential
forms on An+1. Let k1 be a commutative ring, h ∈ k1.
(Assumption 0.) S is a super algebra over k1. For elements of S, we use

standard notation of super algebra. For example, [•, •] is a super commuta-

tor instead of commutator. hat as in •̂ denotes the parity of •.
(Assumption 1.) The algebra S has variables x0, . . . , xn, x̄0, . . . , x̄n

which admits CCR.
(Assumption 2.) S admits two odd derivations d, d̄. In other words,
d, d̄ are two k1 linear map from S to S which satisfy the super Leibniz
rule

d(ab) = d(a)b+ (−1)âadb

d̄(ab) = d̄(a)b+ (−1)âad̄b

(Assumption 3.) We denote dX0, . . . dXn as E0, . . . , En, and d̄X0, . . . d̄Xn

as Ē0, . . . , Ēn. E0, . . . , En, Ē0, . . . , Ēn satisfy the (ACR).
(Assumption 4.) (Cauchy-Riemann) d̄xi = 0, dx̄i = 0 (i = 0, 1, 2, . . . , n).
(Assumption 5.) Ei’s and Xj’s mutually commute. In the same way, Ēi

and X̄j mutually commutes. In other words, Both ‘variables without
bars’ and ‘variables with bars’ form super algebras which are isomor-
phic to the super ring of ordinary differential forms.
(Consequence 6.) Xi commutes with Ēi. This is verified by acting d or
d̄on CCR:

0 = d(hδij) = d[Xi, X̄j] = [Ei, X̄j]

and so on
(Consequence 7.) For any i, j, we have

0 = d[xi, ēj] = [ei, ēj] + [xi, dēj].

We have therefore,
[xi, dēj] = −δijk1.

In particular, we have dēj(= dd̄xj) ̸= 0.
(Assumption 8.) There exists a central constant k such that, k1 = hk,
dd̄x̄i = kx̄i (∀i).
(Consequence 8.)Both d, d̄ are inner inner up to constant multiples:

d =
1

h
ad(

∑
i

x̄iei), d̄ = −1

h
ad(

∑
i

xiēi)
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(Consequence 9.)

[d̄, d] =
1

h2
ad([

∑
i

x̄iei,
∑
j

xj ēj) =
1

h
ad(d(

∑
j

xj ēj)) =
1

h
ad(k

∑
j

xjx̄j+
∑
j

ej ēj)

Conclusion� �
As a non-commutative counter part of the ring of differential forms
on An+1, We take the homogeneous Weyl Clifford algebra WCn+1.
As analogues of holomorphic- and anti-holomorphic-derivations, we
adopt

d =
1

h
ad(

∑
i

x̄iei), d̄ = −1

h
ad(

∑
i

xiēi).

� �
(Remark)∑

i

x̄iei = d(
∑
i

xix̄i),
∑
i

xiēi = d̄(
∑
i

xix̄i),

(supplement)
We should have set up the following assumption (8a-c) and lead

(assumption 8) from there:
(8a) d2 = 0, d̄2 = 0.
(8b) d, d̄ respect the tensor product decomposition by variables:

WCn+1
∼= WC⊗n+1

1

From (1)-(7) and (8a,8b) we deduce that dē = x̄+ constant.
(8c) dē = x̄.

3.2. choice of the moment map. In this subsection we discuss what
to take as a moment map. It may seem reasonable to adopt, as before

(I) µ(I) =
∑
i

xix̄i −R

where R ∈ k1 is a constant. This corresponds to the following grading
of WC.

xi x̄i ei ēi

deg(I) 1 -1 0 0

Marsden-Weinstein quotient by µ(I) equals to the quotient ring of the
ring of elements of deg(I)-degree 0 by the relation µ(I) = 0. But the
relation is not very good for us. We need our ring A to admit the
actions of our odd derivations d, d̄. If we admit µ(I) = 0, that means,∑

i xix̄i = R in A, then by differentiating the equation by d or d̄, we
have ∑

i

xiēi = 0,
∑
i

x̄iei = 0.

By considering the adjoint by the above elements, we see that dx = 0,
d̄x = 0 for any element x ∈ A. It is not very interesting.
Instead of (I), it seems, it would be appropriate to take

(II) µ(II) = k
∑
i

xix̄i +
∑
i

eiēi − R̃

where R̃ is a constant. The adjoint ad(k
∑

i xix̄i +
∑

i eiēi − R̃) corre-
sponds, up to a constant multiple, the following grading of WC.
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xi x̄i ei ēi

1 -1 1 -1

It is also important to point out that µ(II) is d-closed and d̄-closed.
We do not have to struggle with a difficulty seen in µ(I). Furthermore,
we have [d, d̄] = 1

h
ad(µ(II)), so as a consequence, d and d̄ commute on

the Marsden-Weinstein quotient by µ(II). It is very convenient.

Let us now determine the value of our constant R̃. To adjust to
the prototype, we may put R̃ = kR. Furthermore, by scaling the
generators, we see that only constant that affect our theory is a ratio
h/R. So by adjusting h if necessary, we may put R = 1.

As a conclusion:
Conclusion (affine case)� �
As the moment map we adopt k

∑
i xix̄i +

∑
i eiēi − k.� �

Note: We will later use homogeneous coordinates so that we employ
a homoegeneous version of our moment map:

k
∑
i

XiX̄i +
∑
i

EiĒi − kC.

4. some basic ideas

4.1. stereo action and stereo modules.

Definition 4.1.1. Let us consider two commutative rings:

(1) The commutative polynomial ring Poly
def
= k1[X0, X1, . . . , Xn]

of “unmarked” variables
(2) The other is the commutative polynomial ring Poly

def
= k1[X̄0, X̄1, . . . , X̄n]

of “bar-ed ” variables.

Let us consider an action of Poly⊗Poly on WCn+1 given by

(f1 ⊗ f2).x = f1xf2 (f1 ∈ Poly, f2 ∈ Poly, )x ∈ WCn+1

and call it the “stereo action”.

Via the stereo action our algebra WCn+1 may be regraded as a mod-
ule over a polynomial ring k1[X0, X1, . . . , Xn, X̄0, X̄1, . . . X̄n] of 2n+2-
variables. It is a bi-graded module in the usual sense in the commuta-
tive algebras.

We may therefore associate WC to a sheaf on An+1 × Ān+1 and also
to (by taking a quotient by Gm ×Gm) a sheaf WC on Pn × Pn.

We need to be careful to make sure that sheaf WC is merely a sheaf
of modules, not of algebras, on Pn × Pn. When char(k) > 0, however,
we may define and understand the multiplicative structure of WC.

The inclusion map k1[X
p
0 , . . . , X

p
n, X̄

p
0 , . . . , X̄

p
n] ⊂ k1[X0, . . . , Xn, X̄0, . . . , X̄n]

gives a homeomorphism of the corresponding associated projective schemes.
We therefore regard the sheaf corresponding to k1[X

p
0 , . . . , X

p
n, X̄

p
0 , . . . , X̄

p
n]

as a subsheaf of OPn and denote it as O(p).
As the polynomial algebra k1[X

p
0 , . . . , X

p
n, X̄

p
0 , . . . , X̄

p
n] is contained

in the center of WC, we can certainly say that WC has an algebra
structure over O(p).
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4.2. Change of the order of subs and quotients. Let us explain
a bit about the strategy we take. In order to obtain the final target
on Pn × Pn from the homogeneous Weyl-Clifford algebra WC, it is
conceivable to take three steps as schematically described below.

WC
1⇝ (WC)(0)

2⇝ A = (WC)(0)/(µ)
3⇝ A

We will explain this in detail. Please keep in mind, though, that
whether to observe ”function space” or to observe geometric objects
like ”spec” reverses the roles of subs and quotients.

In terms of the ”function-space-level” it is as follows:
Step 1. Take the invariant part by the anti-diagonal action by Gm.
By “anti-diagonal action” we mean the action given by An+1×An+1 ∋

(v, w) 7→ (cv, c−1w) (c ∈ Gm). We may well write it as

Xi 7→ cXi, X̄i 7→ c−1X̄i, Ei 7→ cEi, Ēi 7→ c−1Ēi, C 7→ C

When we consider commutative (and non-super) version, the ring of
anti-diagonal action (ring generated by {XiX̄j} ) gives the Segré em-
bedding of Pn ×Pn, which might be saying to us that we are in a right
path.

Step 2. Take quotient by the moment element µ and obtain an
algebra A. We have already explained that step1+ step2 is the Marsden
Weinstein quotient

Step 3. In order to recover what we have done with the homogeniza-
tion with C, we consider the sheaf of algebras on P n×Pn corresponding
to A.

The same thing in the corresponding geometric object is as follows:
Step 1. Take quotient by the diagonal action of Gm.

Step 2. Cut by moment element µ = 0.
Step 3. We consider an sheaf A of algebras on Pn×Pn corresponding

A and descend to the cone to Pn × Pn (take a quotient by Gm)
In any case, what is available is sheaf of algebras A on Pn × Pn.

Putting step 1 before step 2 is an advantage of the use of the Marsden-
Weinstein quotient, µ generates a relatively small ideal in WC)(0). (in
the present case, µ belongs to the center of (WC)(0).

In order to obtain A, it is also possible to change the order of the
above procedures and do as follows.

Starting with the Weyl-Clifford algebra WC,
step 1′ + 3′: We take quotient by Gm ×Gm.
That means, we regard WC as the stereo module and consider the

sheaf of algebras WC on Pn × Pn.
step 2′: We cut the sheaf WC by µ = 0.
This strategy is more attractive. Step 1′ is done first, so we can

safely perform step 2′. Therefore, we will follow this strategy.

5. some definitions

5.1. open sets U, V̄ . In later sections, we make some arguments using
local coordinates of Pn. To somewhat ease the later notation, we use
the following conventions.

As an affine subset of Pn, we select a piece Ui = {Xi ̸= 0} and call
it U . We denote by iU the selected index i.

U = {XiU ̸= 0}.
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Similarly, we define an affine piece V̄ of P̄n (which is just a copy of Pn).

V̄ = {X̄iV̄
̸= 0}.

We call the homogeneous coordinates XiU , X̄iV̄
simply XU , X̄V̄ (re-

spectively). The following two sheaves are important for our later ar-
guments.

Ω••[∂ log(X̄V̄ )]

Ω••[d log(XUX̄V̄ )]

5.2. Structure of the sheaf WC.

5.2.1. Ω̃ = π∗(Ω)
Gm. In this paper Ω̃, or, what is the same but some-

what more precisely, π∗(Ω)
Gm frequently comes out. It is a coherent

sheaf on Pn with an algebra structure. The symbols are also almost
reasonable as described below, but various things have been omitted
little by little, so it has become obscure. I will write it clearly here.

Definition 5.2.1. (1) We denote the scheme An+1 \ {0} as An+1
o .

(2) We denote the natural projection An+1
o → Pn by π.

(3) We denote the de Rham complex on An+1
o by ΩAn+1

o
.

(4) By shorthand, we denote a sheaf π∗ΩAn+1
o

on Pn as π∗Ω.
(5) As π∗Ω has a naturalGm action, we denote the sheaf of invariant

sections by (π∗Ω)
Gm .

5.2.2. Expression of (π∗Ω)
Gm by coordinates. Let us take homogeneous

coordinates X0, X1, . . . , Xn of Pn. We denote by π a projection

π : An+1
o ∋ (X0, X1 . . . , Xn) 7→ [X0, X1 . . . , Xn]

When restricted on an open set {X0 ̸= 0} of An+1, π may be identified
with

(X0, X1, . . . , Xn) 7→ [1 : X1/X0, . . . Xn/X0].

We may thus decompose π in the following way.

Gm × An ↪→ An+1 π→ An ⊂ Pn

∪p ∪p ∪p
(c, (x1, x2, . . . , xn)) 7→(c, cx1, cx2, . . . , cxn) 7→(x1, x2, . . . , xn)

We may take a general index iU instead of 0. We may then realize:

local expression of π∗Ω
Gm� �

The sheaf π∗Ω
Gm on Pn is a sheaf of super commutative algebra

(π∗Ω)
Gm ∼= ΩPn [X−1

U dXU ].� �
An exact sequence satisfied by π∗Ω

Gm� �
0 → ΩPn

ι→ (π∗Ω)
Gm

IntEuler→ ΩPn → 0

where ι is a injection obtained by the pull back of forms. IntEuler
denotes the interior product with the Euler operator.� �
The following is well known. (We take Z as the coefficient ring since

it is the most generic.)
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Proposition 5.2.2.

H•(Pn,Ω•) ∼= Z[L]/(Ln+1)

We obtain by an exact sequence: There exists a free generator v0, vn of
degrees 0 , n (respectively) such that,

H•(Pn, Ω̃•) ∼= Zv0 ⊕ Zvn.

5.2.3. Structure of WC. We have two Pn’s at hand, one is “without
bar” and the other is “with bar”. We may write ∂ as the exterior
derivation for the former, and ∂̄ as the exterior derivation of the latter.

By studying the ring structure of the Weil-Clifford algebra, we see
that we have two copies of (π∗Ω)

Gm as subalgebras in the coherent
sheaf WC over Pn × Pn. We need to be take care that though the two
subalgebras are certainly closed under multiplication, the commutation
relation of the elements of two subalgebras is in general very difficult.

In any case, we can say that WC carries a stereo module structure
over π∗Ω

Gm ⊠ π∗Ω̄
Gm , by defining the multiplication rule as “ π∗Ω

Gm

from the left and π∗Ω̄
Gm from the right.”

Theorem 5.2.3. WC is locally free as a stereo module of (π∗Ω)
Gm ⊠

(π∗Ω)
Gm):

WC ∼=
∞⊕
l=0

(
(π∗Ω)

Gm ⊠ (π∗Ω)
Gm)(−l,−l

)
5.3. sparse differential forms. In this section we define sparse forms,

and sheaves Ωsparse, Ω̃sparse they generate. They are defined to make a
shortcut to the theory of Deligne, Illusie and Cartier, by using full use
of global projective coordinates.

Let us start by quoting the following Theorem due to Deligne and
Illusie.

Theorem 5.3.1. [4] Let k be a field of characteristic p > 0. Let
us assume that a smooth X Spec(k)-scheme is liftable to a Witt ring
W2(k). We assume p > dim(X). (This is our extra assumption, just
to make the argument a little bit easier.) Then the lifting determines
an isomorphism

φX̄ :
⊕

Ωi
X(p)/S[i]

∼= F∗Ω
•
X/S

such that Hi(φX̃) = C−1.

We are going to use the theory in a limited case whereX = Pn orX =
Pn×Pn. The situation becomes simple since we have global coordinates.
Let us take a homogeneous coordinate system X0, X1, . . . , Xn of Pn, as
we have already done before.

For an affine open subset Uj = {Xj ̸= 0} of Pn, we take x
(j)
i = Xi/Xj

as local variables.
We denote by Ωsparse as a subsheaf of Ω generated by Op = {fp; f ∈

O} and

{(x(j)
i )p−1x

(j)
i ; i = 0, . . . n}.

on Uj. We see easily that this does not depend on the choice of j and
that they indeed glue together to form a sheaf.

We also define, as a subsheaf of Ω̃ = Ω[d log(Xj)], a sheaf Ω̃sparse[d logXj]
It is also independent of the choice of j and glue together.
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We also note that

d logXj − d logXl = d log(Xj/Xk) ∈ Ωsparse

holds.
The following inverse Cartier operator plays an important role in

the theory of Deligne-Illusie-Cartier theory. It is also important in our
story.

Proposition 5.3.2. [5, Th 2.1.9] For a scheme X over a scheme S
over a field of characteristic p, We put X(p) = X ×S,str,Frob S. Then the
inverse Cartier operator

C−1
X/S : ΩX(p)/S

∼= H(ΩX/S),

defined by for f ∈ Xp, f 7→ fp, df 7→ fp−1df , is an isomorphism.

When X = Pn, we may, by using the projective coordinates, lift the
Cartier operator and obtain

Ĉ−1
X/S : ΩX(p)/S → ΩX/S.

The image is the global object Ωsparse.
As a result, we have:

Proposition 5.3.3.

ΩPn,sparse
∼= H(ΩPn)

Ω̃Pn,sparse
∼= H(Ω̃Pn)

In other words, the sheaf (ΩPn,sparse, 0) is quasi-isomorphic to (ΩPn , d).

The sheaf (Ω̃Pn,sparse, 0) is quasi-isomorphic to (Ω̃Pn , d).

This proposition itself is not a difficult one. It can be proved by
arguing locally and by treating polynomials.

5.4. degree fdeg of elements of WC as differential forms. Let us
denote by fdeg the “degree as a form”. Namely:

variable Xi X̄i Ei Ēi k C

fdeg (0, 0) (0,0) (1,0) (0, 1) (1, 1) (0, 0)

As we will see later, WC admits an action (“stereo action”) of an
algebra sheaf of differential forms, and fdeg is compatible with it.

5.5. definition of our sheaves of algebras A, A, WC on Pn ×Pn.

Definition 5.5.1. Let us put µ(k,0)
def
= (k

∑
i XiX̄i +

∑
i EiĒi) and

define

A
def
= WC/(µ(k,0) − kC)

We note that an equation

kp
∑
i

Xp
i X̄

p
i = µp

(k,0) − (khC)p−1µ(k,0) = kp(1− hp−1)Cp

holds onA. That means, we have necessarily an equation kp((
∑

iX
p
i X̄

p
i )−

(1− hp−1)Cp) = 0.
So let us take algebras who has the property (

∑
i X

p
i X̄

p
i ) − (1 −

hp−1)Cp) = 0. Namely,



14 YOSHIFUMI TSUCHIMOTO

Definition 5.5.2. We define

A
def
=WC/(µ(k,0) − kC,

∑
i

Xp
i X̄

p
i − (1− hp−1)Cp)

(∼=A/(
∑
i

Xp
i X̄

p
i − (1− hp−1)Cp)),

WC
def
=WC/(

∑
i

Xp
i X̄

p
i − (1− hp−1)Cp).

WC =

p−1⊕
l=0

Ω̃[k]⊠ ˜̄Ω[k](−l,−l)

6. main result

6.1. A supplement on spectral sequences. In this paper we are
using spectral sequences to deal with something of a “derived category
of a derived category. Let us briefly state a supplementary result we
use on spectral sequences.

Proposition 6.1.1. Let C1,C2 be abelian categories. We assume C1

has enough injectives. Let M•• a double complex of objects in C1. We
assumeM to be bounded below in the sense that there exists an integer
k such that M ij = 0 whenever i < k or j < k. Let F : C1 → C2 be a
left-exact additive functor. Then there exists an spectral sequence

E2 = Ri
d1
F (Hj

d2
(M)) =⇒ E∞ = Ri+jF (Tot(M••)).

Proof. Let us regard the double complex (M••) as a single d2-chain
complex (M,d1)

• of d1-graded modules, that means, a d2-chain complex
of Cbdd(C, d1). We take its Cartan-Eilenberg resolution (M•, d1)

• →
(I•, d1)

•• with an extra care: Looking at short exact short exact se-
quences

0 → Image d2 → Ker d2 → Hd2(M) → 0

and
0 → Ker d2 → M → Image(d2) → 0,

we make use of cones of injective resolutions of Image d2 and Hd2(M) to
create injective resolutions of Ker d2 and M . We then obtain a Cartan-
Eilenberg injective resolution I••• such that Hd2(I

•••) is a injective
resolution of Hd2(M). Using the resolution I, we have

RiF (Hd2(M))

∼=H i(F (Tot1,3(Hd2(I
•••)))) (Hd2(I) is a resolution of Hd2(M))

=H i(Tot1,3(Hd2(F (I•••)))) (F is left exact and I is injective)

=H iHd2(Tot1,3(F (I•••))) (Tot1,3 commutes with Hd2 .)

On the other hand we have

RiF (Tot(M••))

∼=H i(F (Tot123(I
•••))) (Tot(I) is an injective resolution of Tot(M))

∼=H i(Tot123(F (I•••))) (F commutes with Tot)

∼=H i(TotTot1,3(F (I•••))).

So by using an ordinary theory of spectral sequence on a double com-
plex Tot1,3 F (I•••), we obtain the desired spectral sequence. □
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6.2. Statement of the main theorem. Throughout the paper, what
we denote as F1 ⊠? F2 should actually be denoted as π∗

1F1 ⊗? π
∗
2F2. In

most of the cases the coefficient ring ? is equal to O(p), which we omit.
Recall that we have constructed a sheaf WC on Pn × Pn as a sheaf

associated to the homogeneous Weyl-Clifford algebra WC. We also
have sheaves A,WC,A as its quotients. They have derivation d̄ defined
as

d̄ = − 1

hC
ad(ε̄)

where ε =
∑

XiĒi (subsubsection2.3.4). (We have explained some
reason for this choice in section3.1.)

Theorem 6.2.1. In the following we assume the charcteristic of the
base field k is p > 0. We also assume p is greater than n, the size of
our Weyl-Clifford algebras.

(1) Sheaves WC,A have structure of O(p)-algebras. We may define
A,WC as their quotient algebras.

(2) WC,A,A,WC are double complexes with odd differentials d, d̄.

(3) As stereo modules, WC ∼=
⊕

l≥0 Ω̃
•[k]⊠O(p)[k] Ω̃

•
[k]⊗(O(−l,−l))

(4) As d̄-complex, (Ω̃•[k], d̄) ∼= (Ω̃•[k],−kI0), (Ω̃
•
[k], d̄) ∼= (Ω̃

•
[k], ∂̄)

where I0 denotes the interior product with the Euler vector field∑
i Xid/dXi.

(5) The sheaf of d̄-hyper cohomology groups are given as follows
(i) For WC:

(Hd̄(WC), d) ∼= (Ω•, ∂)⊠O(p) ((˜̄Ω•
sparse)(k=0)[C

p

UV̄
], 0)

d−q.i∼ (
⊕
l≥0

(Ω•
sparse ⊠O(p) (˜̄Ω•

sparse)(k=0)[C
p

UV̄
], 0)

We have in particular,

Hd(Hd̄(WC)) ∼= Ω•
sparse ⊠O(p) (˜̄Ω•

sparse)(k=0)[C
p

UV̄
]

R•Γ(Hj
d̄(WC), d) ∼=

∞⊕
l=0

H•(Pn × Pn,Ω•
sparse ⊗O(p)

˜̄Ω•
sparse(−lp,−lp))

(ii) For A:

(Hd̄(A), d) ∼=(Ω•, ∂)⊠O(p) ((˜̄Ω•
sparse)(k=0), 0)

⊕ (Ω̃(k=0), ∂)⊠O(p) ((˜̄Ω•
sparse)(k=0))[C

p

UV̄
]Cp

UV̄
, 0)

d−q.i∼ (Ω•
sparse, 0)⊠O(p) ((˜̄Ω•

sparse)(k=0), 0)

⊕ (Ω̃sparse(k=0), 0)⊠O(p) ((˜̄Ω•
sparse)(k=0))[C

p

UV̄
]Cp

UV̄
, 0)

In particular,

Hd(Hd̄(A)) ∼=Ω•
sparse ⊠O(p) (˜̄Ω•

sparse)(k=0)

⊕ Ω̃sparse(k=0) ⊠O(p) ((˜̄Ω•
sparse)(k=0))[C

p

UV̄
]Cp

UV̄

R•Γ(Hd̄(A)) ∼=H•(Ω•
sparse ⊠O(p) (˜̄Ω•

sparse)(k=0))

⊕
∞⊕
l=1

H•(Ω̃sparse(k=0) ⊠O(p) ((˜̄Ω•
sparse)(k=0))(−lp,−lp))
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(iii) For WC, A:

Hd(Hd̄(WC)) ∼= Hd(Hd̄(A)) ∼= Ω•
sparse ⊠O(p) (˜̄Ω•

sparse)(k=0)

R•Γ(Hj
d̄(WC), d) ∼= R•Γ(Hj

d̄(A), d)
∼= H•(Pn × Pn,Ω•

sparse ⊗O(p)
˜̄Ω•
sparse)

(6) Let us put d = d+ d̄. Then:

(WC,d)
q.i∼

⊕
l≥0

((Ω•
sparse ⊗ Ω̄•

sparse[d log(XUX̄V̄ )(−lp,−lp)), 0)

We have therefore:

Hi(WC,d) ∼=
⊕
l≥0

(Ω•
sparse ⊗ Ω̄•

sparse[d log(XUX̄V̄ )(−lp,−lp))

RiΓ(WC,d) ∼=
⊕
l≥0

RiΓ(Pn×Pn,Ω•
sparse⊠Ω̄•

sparse[d log(XUX̄V̄ )](−lp,−lp))

Corollary 6.2.2. Let us consider the following spectral sequence ob-
tained in Proposition 6.1.1: spectral sequence

E2 = RdΓ(Pn × Pn;Hd̄(WC))(A)

=⇒ E∞ = R•
d+d̄Γ(Pn × Pn, (WC)).

Then:

(1) The spectral sequence (A) is isomorphic to the following.

E2 = H•(Pn,Ωsparse)⊗H•(Pn,Ωsparse[d log X̄V ])

=⇒ E∞ = RiΓ(Pn × Pn,Ω•
sparse ⊠ Ω•

sparse[d log(XUX̄V )])

(2) The cohomology groups are computed so

E2
∼= k[L2, L̄n]/(L

n
2 , L̄

2
n)

By computing the dimensions, we see that dimE2 = dimE∞ =
2n so that (A) degenerates.

As our original theory naturally has a • ↔ •̄ symmetry, we may
expect we have extra bar-structure in the cohomology group.

6.3. proof of the main theorem. (1), (2) are direct consequences of
the definition. (3), (4) are directly verified by calculation.

Let us proceed to the proof of (5). Since Hd̄ pass through the derived
category (of graded d-complexes), we consider the story in that place.

(i)
Let us put cUV̄ = X−1

U CX̄V̄ and see how to deal with it. We have a
direct-sum decomposition

(DS) WC ∼=
⊕
l≥0

Ω̃[k]⊠k1[k]
˜̄Ω[k]clUV̄

.

d̄clUV̄ = d̄(X−l
U C lX̄−l

V )

= X−l
U C l · (−l)X̄−l−1

V ĒV )

= −lX−l
U C lX̄−l

V X−1
V EV

= −lclUV̄ (∂̄ log(X̄V ))

so d̄ preserves the direct sum decomposition (DS).
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Let us take a section α of Ω̃[k]⊠k1[k]
˜̄Ω[k] and see how the d̄-cocycle

condition for αcl
UV̄

look like.

We present α as α = α1+(∂̄ log(X̄V ))α2 with α1, α2 ∈ Ω̃[k]⊠k1[k]Ω̄[k].
Then we have

d̄(αclUV̄ ) = 0

⇔(∂̄ log(X̄V ))d̄α2 − l(∂̄ log(X̄V ))α1 = 0

⇔

{
d̄α1 = 0

d̄α2 = −lα1.

In particular, if l ̸= 0 (mod p), then

d̄(αclUV̄ ) = 0

=⇒ α1 =
−1

l
d̄α2

=⇒ αclUV̄ = (
1

l
)(∂̄ log(X̄0))α2)c

l
UV̄

= d̄(
1

l
α2c

l
UV̄ )

So parts with l ̸= 0 (mod p) do not affect the cohomology. WC is

d̄-quasi isomorphic to
⊕

l≥0 Ω̃[k]⊠k1[k]
˜̄Ω[k]cpl

UV̄
.

WC ∼=
∞⊕
l=0

Ω̃[k]⊠ ˜̄Ω[k]clUV̄

q.i.∼
∞⊕
l=0

Ω̃[k]⊠ ˜̄Ω[k]cpl
UV̄

Let us use the Deligne-Illusie-Cartier on the right hand side. (˜̄Ω[k], ∂̄) ∼=
( ˜Ω̄sparse[k], 0) (homological isom.) Since sheaves ˜̄Ω[k], ˜Ω̄sparse[k] are both
flat over O(p)[k], they are flat resolutions of themselves. The ⊗ (hidden

in “⊠”...) are actually equal to
L
⊗. We may thus deal with them in the

framework of our derived category.

WC
q.i∼ Ω̃[k]⊠O(p)[k]

˜Ω̄sparse[k][c
p

UV̄
]

where ˜Ω̄sparse[k] is a complex whose derivation ∂̄ is equal to 0. By the
flatness we may commute tensor products and cohomologies to obtain:

Hd̄(WC) ∼= Hd̄(Ω̃[k])⊠O(p)[k]
˜Ω̄sparse[k][c

p

UV̄
]

∼= Ω⊠O(p)[k]
˜Ω̄sparse[k][c

p

UV̄
]

∼= Ω⊠O(p)
˜Ω̄sparse[k][c

p

UV̄
]

∼= Ω⊠O(p) (˜̄Ω•
sparse)(k=0)[c

p

UV̄
]

(ii) WC/(kC − µ0)
q.i.∼ Cone(WC[1]

kC−µ0→ WC). Since we have µ0 =

d̄(d(F )) and F =
∑

i XiX̄i, the complex (WC[1]
kC−µ0→ WC) is ∂̄ -

homotopic to the complex (WC[1]
kC→ WC). (Note that, since we have

d2 = 0, the homotopy d(F ) super commutes to d.) We have therefore,

WC/(kC − µ0)
q.i.∼ Cone(WC[1]

kC→ WC)
q.i.∼ WC/(kC). In other words,
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we may treat WC/(kC) instead of A. Locally speaking, we have:

WC/(kC) ∼= Ω̃[k]⊠ ˜̄Ω[k]⊕⊕
l>0

(Ω̃[k]⊠ ˜̄Ω[k]/(k))clUV̄

q.i.∼ Ω⊠ ˜̄Ω[k]/(k)⊕⊕
l>0

(Ω̃⊠ ˜̄Ωsparse)c
l
UV̄

q.i.∼ Ω⊠ ˜Ω̄sparse[k]/(k)⊕
⊕
l>0

(Ω̃⊠ ˜̄Ωsparse)c
l
UV̄

q.i.∼ Ω⊠ ˜Ω̄sparse[k]/(k)⊕
⊕
l>0

(Ω̃⊠ ˜̄Ωsparse)c
pl

UV̄

(iii)Every sheaf which appears when dealing with A, WC was flat
over Pn × Pn. So we may tensor (something) and obtain

WC
q.i.∼

⊕
l≥0

(Ω⊠O(p) (˜̄Ω•
sparse)(k=0)[c

p

UV̄
])⊗O(p) (O(p)/(Cp − (1− hp−1)F p))

∼= Ω⊠O(p) (˜̄Ω•
sparse)(k=0)

(iv) Likewise, we have

A
q.i.∼ Ω⊠ ˜Ω̄sparse[k]/(k)

(6) is obtained by another application of Deligne-Illusie-Cartier the-
ory.

(7) follows from (6).
(8) likewise for d.
Let us put bU = ∂ log(XU)), b̄V̄ = ∂̄ log(X̄0)). Note that d(bU+ b̄V̄ ) =

0.
For α ∈ Ω̃[k]⊠ ˜̄Ω[k], let us put

α = β0 + (bU + b̄V̄ )β1.

(β0, β1 ∈ Ω⊠ Ω̄[k, bU ]).

d(αclUV̄ ) =(dβ0 − (bU + b̄V̄ )dβ1)c
l
UV̄ − l(bU + b̄V̄ )β0c

l
UV̄

=(dβ0)c
l
UV̄ + (bU + b̄V̄ )(−dβ1 − lβ0)c

l
UV̄

d, d̄ (and their sum d also) preserves the number of bU , b̄V̄ . We my thus
compare the coefficients of (bU + b̄V̄ ) and obtain

d(αcl
UV̄

) = 0⇔

{
dβ0 = 0

dβ1 = −lβ0

As a result terms of cl
UV̄

which do not satisfy p|l do not affect d-
cohomology.

If p|l, then cl
UV̄

is d-closed. For α(k), β(k) ∈ Ω⊠ Ω̄, we have

d(bUα(k) + β(k)) = 0

⇔(−bUdα(k) + kα(k) + dβ(k) = 0

⇔

{
dα(k) = 0

kα(k) + dβ(k) = 0.



KÄHLER-PROJECTIVE SPACE 19

Non-constant terms of k in β is unaffected. When we divide d-closeds
by a d-exact, then what we get is equal to H(Ω⊠Ω̄). With the Deligne-
Illusie-Cartier theory, we obtain:

(
⊕

l≥0Ωsparse ⊠ Ω̄sparse(−pl,−pl), d) is quasi isomorphic to (WC, d).

6.4. The spectral sequence.⊕
l

H l(Pn × Pn,Ω⊗ ˜̄Ω) = ⊕
l,m

H l(Pn,Ω)⊗Hm(Pn, ˜̄Ω) ∼= k[L]⊗ k[vn]

(L is an element of degree 2 with Ln+1 = 0i. vn is an element of degree
2n with v2n = 0.) We have:∑

l

dim(H l(Pn × Pn,Ω⊗ ˜̄Ω)) = 2n+ 2.

On the other hand, let us put M = ⊕lR
lΓ(Ω̃⊗ Ω̄, d).

0 → Ω⊗ Ω̄ → Ω̃⊗ Ω̄ → Ω⊗ Ω̄ → 0 : exact

We have therefore 0 → H•(Pn × Pn,Ω ⊗ Ω̄)/ Image(L + L̄) → M →
Ker(L+ L̄) → 0 : exact.

The dimension of k[L] is (n+ 1).
0 → Ker(L+ L̄) → k[L, L̄] → (L+ L̄)k[L, L̄] → 0 :exact
and
0 → (L+ L̄)k[L, L̄] → k[L, L̄]

subtraction→ k[L] → 0 : exact
implies

dimKer(L+ L̄) = (n+ 1)2 − (n+ 1) = n2 + n.

0 → (L+ L̄)k[L, L̄] → k[L, L̄]
subtraction→ k[L] → 0 : exact so that

dim(M) = 2n+ 2.
We conclude therefore that our spectral sequence (A) degenerates.
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