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01.Review of elementary definitions on modules.

Definition 1.1. A (unital associative) ring is a set R equipped
with two binary operations (addition (“+”) and multiplication (“·”))
such that the following axioms are satisfied.

(Ring1) R is an additive group with respect to the addition.
(Ring2) distributive law holds. Namely, we have

a(b+ c) = ab+ bc, (a+ b)c = ac+ bc (∀a, ∀b, ∀c ∈ R).

(Ring3) The multiplcation is associative.
(Ring4) R has a multiplicative unit.

For any ring R, we denote by 0R (respectively, 1R) the zero element
of R (respectively, the unit element of R). Namely, 0R and 1R are
elements of R characterized by the following rules.

• a + 0R = a, 0R + a = a ∀a ∈ R.
• a · 1R = a, 1R · a = a ∀a ∈ R.

When no confusion arises, we omit the subscript ‘R’ and write 0, 1
instead of 0R, 1R.

Definition 1.2. Let R be a unital associative ring. An R-module

M is an additive group M with R-action

R ×M → M

which satisfies

(Mod1) (r1r2).m = r1.(r2.m) (∀r1, ∀r2 ∈ R, ∀m ∈ M)
(Mod2) 1.m = m (∀m ∈ M)
(Mod3) (r1 + r2).m = r1.m+ r2.m (∀r1, ∀r2 ∈ R, ∀m ∈ M).
(Mod4) r.(m1 +m2) = r.m1 + r.m2 (∀r ∈ R, ∀m1, ∀m2 ∈ M).

Example 1.3. Let us give some examples of R-modules.

(1) If k is a field, then the concepts “k-vector space” and “k-
module” are identical.

(2) Every abelian group is a module over the ring of integers Z in
a unique way.

Definition 1.4. An subset M of an R-module N is said to be an
R-submodule of N if M itself is an R-module and the inclusion map
j : M → N is an R-module homomorphism.

Definition 1.5. Let M,N be modules over a ring R. Then a map
f : M → N is called an R-module homomorphism if it is additive
and preserves the R-action.
The set of all module homomorphisms from M to N is denoted by

HomR(M,N). It has an structure of an module in an obvious manner.

Definition 1.6. An subset N of an R-module M is said to be an
R-submodule of M if N itself is an R-module and the inclusion map
j : N → M is an R-module homomorphism.
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Definition 1.7. Let R be a ring. Let N be an R-submodule of an
R-module M . Then we may define the quotient M/N by

M/N = M/ ∼N

where the equivalence relation ∼N is defined as follows:

m1 ∼N m2 ⇐⇒ m1 −m2 ∈ N.

It may be shown that the quotient M/N so defined is actually an R-
module and that the natural projection

π : M → M/N

is an R-module homomorphism.

Definition 1.8. Let f : M → N be an R-module homomorphism
between R-modules. Then we define its kernel as follows.

Ker(f) = f−1(0) = {m ∈ M ; f(m) = 0}.

The kernel and the image of an R-module homomorphism f are R-
modules.

Theorem 1.9. Let f : M → N be an R-module homomorphism

between R-modules. Then

M/Ker(f) ∼= f(N).

Definition 1.10. Let R be a ring. An “sequence”

M1

f
→ M2

g
→ M3

is said to be an exact sequence of R-modules if the following con-
ditions are satisfied

(Exact1) M1,M2 are R-modules.
(Exact2) f, g are R-module homomorphisms.
(Exact3) Ker(g) = Image(f).

For any R-submodule N of an R-module M , we have the following
exact sequence.

0 → N → M → M/N → 0

Exercise 1.1. Compute the following modules.

(1) HomZ(Z/3Z,Z).
(2) HomZ(Q,Z).
(3) HomZ(Q,Z/5Z).
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02. “Hom” modules.

Lemma 2.1. Let R be a ring. Let f : M → N be a homomorphism

of R-modules. Then for any R-module L we may define:

(1) A homomorphism HomR(L, f) : HomR(L,M) → HomR(L,N)
defined by HomR(L, f)(g) = f ◦ g.

(2) A homomorphism HomR(f, L) : HomR(N,L) → HomR(M,L)
defined by HomR(f, L)(h) = h ◦ f .

Proposition 2.2. Let R be a ring. Let

0 → M1
f
→ M2

g
→ M3 → 0

be an exact sequence of R-modules. Then for any R-module N , we

have:

(1)

0 → HomR(N,M1)
HomR(N,f)

→ HomR(N,M2)
HomR(N,g)

→ HomR(N,M3)

is exact. The third arrow HomR(N, g) need not be surjective.

(2)

0 → HomR(M3, N)
HomR(g,N)

→ HomR(M2, N)
HomR(f,N)

→ HomR(M1, N)

is exact. The third arrow HomR(f,N) need not be surjective.

Exercise 2.1. We consider an exact sequence

0 → 3Z
i
→ Z → Z/3Z → 0

where i is the inclusion map. Show that

HomZ(Z,Z)
Hom(i,Z)
→ HomZ(3Z,Z)

is not surjective

Exercise 2.2. Assume R is a field. Then show that the third arrow
which appear in the sequence (1) in Proposition 2.2 is surjective.
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03. cohomology of a complex. We mainly follow the treatment in

[1].

Definition 3.1. Let R be a ring. A cochain complex of R-
modules is a sequence of R-modules

C• : . . .
dn−1

→ Cn dn

→ Cn+1 dn+1

→ . . .

such that dn◦dn−1 = 0 . The n-th cohomology of the cochain complex
is defined to be the R-module

Hn(C•) = Ker(dn)/ Image(dn−1).

Elements of Ker(dn) (respectively, Image(dn−1)) are often referred to
as cocycles (respectively, coboundaries).

A bit of category theory:

Definition 3.2. A category C is a collection of the following data

(1) A collection Ob(C) of objects of C.
(2) For each pair of objects X, Y ∈ Ob(C), a set

HomC(X, Y )

of morphisms.
(3) For each triple of objects X, Y, Z ∈ Ob(C), a map(“composition

(rule)”)

HomC(X, Y )×HomC(Y, Z) → HomC(X,Z)

satisfying the following axioms

(1) Hom(X, Y ) ∩Hom(Z,W ) = ∅ unless (X, Y ) = (Z,W ).
(2) (Existence of an identity) For any X ∈ Ob(C), there exists an

element idX ∈ Hom(X,X) such that

idX ◦f = f, g ◦ idX = g

holds for any f ∈ Hom(S,X), g ∈ Hom(X, T ) (∀S, T ∈ Ob(C)).
(3) (Associativity) For any objectsX, Y, Z,W ∈ Ob(C), and for any

morphisms f ∈ Hom(X, Y ), g ∈ Hom(Y, Z), h ∈ Hom(Z,W ),
we have

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Morphisms are the basic actor/actoress in category theory.
An additive category is a category in which one may “add” some

morphisms.

Definition 3.3. An additive category C is said to be abelian if it
satisfies the following axioms.

(A4-1) Every morphism f : X → Y in C has a kernel ker(f) : Ker(f) →
X .

(A4-2) Every morphism f : X → Y in C has a cokernel coker(f) : Y →

Coker(f).
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(A4-3) For any given morphism f : X → Y , we have a suitably defined
isomorphism

l : Coker(ker(f)) ∼= Ker(coker(f))

in C. More precisely, l is a morphism which is defined by the
following relations:

ker(coker(f)) ◦ f = f (∃f), f = l ◦ coker(ker(f)).

Definition 3.4. Let C be an abelian category.

(1) An object I in C is said to be injective if it satisfies the follow-
ing condition: For any morphism f : M → I and for any monic
morphism ι : N → M , f “extends” to a morphism f̂ : M → I.

M
f̂

−−−→ I

ι

x





∥

∥

∥

N
f

−−−→ I
(2) An object P in C is said to be projective if it satisfies the

following condition: For any morphism f : P → N and for any
epic morphism π : M → N , f “lifts” to a morphism f̂ : M → I.

P
f̂

−−−→ M
∥

∥

∥

π





y

P
f

−−−→ N

Exercise 3.1. Let R be a ring. Let

0 → M1 → M2 → M3 → 0

be an exact sequence of R-modules. Assume furthermore that M3 is
projective. Then show that the sequence

0 → HomR(N,M1)
HomR(N,f)

→ HomR(N,M2)
HomR(N,g)

→ HomR(N,M3) → 0

is exact.

References

[1] S. Lang, Algebra (graduate texts in mathematics), Springer Verlag, 2002.
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04. projective and injective modules

Lemma 4.1. Let R be a (unital associative but not necessarily com-
mutative) ring. Then for any R-module M , the following conditions
are equivalent.

(1) M is a direct summand of free modules.
(2) M is projective

Corollary 4.2. For any ring R, the category (R -modules) of R-
modules have enough projectives. That means, for any object M ∈
(R -modules), there exists a projective object P and a surjective mor-
phism f : P → M .

Definition 4.3. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×

→ M

is surjective.

Definition 4.4. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×

→ M

is epic.

Lemma 4.5. Let R be a (commutative) principal ideal domain (PID).
Then an R-module I is injective if and only if it is divisible.

Proposition 4.6. For any (not necessarily commutative) ring R,
the category (R -modules) of R-modules has enough injectives. That
means, for any objectM ∈ (R -modules), there exists an injective object
I and an monic morphism f : M → I.

For the proof of the proposition above, we need the followin lemmas.

Lemma 4.7. For any Z-module M , let us denote by M̂ the module
HomZ(M,T1) where T1 = R/Z. Then:

(1) For any free Z-module F , F̂ is divisible (hence is Z-injective).
(2) For any Z-module M , there is a canonical injective Z-homomorphism

M →
̂
(M̂).

(3) Any Z-module M may be embeded in a divisible module T .

Lemma 4.8. Let T be a divisible module. Then for any ring A,

HomZ(A, T )

is A-injective.

References
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05. projective and injective modules

Definition 5.1. A (covariant) functor F from a category C to a
category D consists of the following data:

(1) An function which assigns to each object C of C an object F (C)
of D.

(2) An function which assigns to each morphism f of C an mor-
phism F (f) of D.

The data must satisfy the following axioms:

(functor-1) F (1C) = 1F (C) for any object C of C.
(functor-2) F (f ◦ g) = F (f) ◦ F (g) for any composable morphisms f, g of

C.

By employing the following axiom instead of the axiom (functor-2)
above, we obtain a definition of a contravariant functor:
(functor-2′) F (f ◦ g) = F (g) ◦ F (f) for any composable morphisms

Definition 5.2. Let F : C1 → C2 be a functor between additive
categories. We call F additive if for any objects M,N in C1,

Hom(M,N) → Hom(F (M), F (N))

is additive.

Definition 5.3. Let F be an additive functor from an abelian cat-
egory C1 to C2.

(1) F is said to be left exact (respectively, right exact ) if for
any exact sequence

0 → L → M → N → 0,

the corresponding map

0 → F (L) → F (M) → F (N)

(respectively,

F (L) → F (M) → F (N) → 0)

is exact
(2) F is said to be exact if it is both left exact and right exact.

Lemma 5.4. Let R be a (unital associative but not necessarily com-
mutative) ring. Then for any R-module M , the following conditions
are equivalent.

(1) M is a direct summand of free modules.
(2) M is projective

Corollary 5.5. For any ring R, the category (R -modules) of R-
modules have enough projectives. That means, for any object M ∈
(R -modules), there exists a projective object P and a surjective mor-
phism f : P → M .
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Definition 5.6. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×
→ M

is surjective.

Definition 5.7. Let R be a commutative ring. We assume R is a
domain (that means, R has no zero-divisors except for 0.)
An R-module M is said to be divisible if for any r ∈ R \ {0}, the

multplication map

M
r×
→ M

is epic.

Definition 5.8. Let (K•, dK), (L
•, dL) be complexes of objects of

an additive category C.

(1) A morphism of complex u : K• → L• is a family

uj : Kj → Lj

of morphisms in C such that u commutes with d. That means,

uj+1 ◦ djK = d
j
K ◦ uj

holds.
(2) A homotopy between two morphisms u, v : K• → L• of com-

plexes is a family of morphisms

hj : Kj → Lj−1

such that u− v = d ◦ h+ h ◦ d holds.

Lemma 5.9. Let C be an abelian category that has enough injectives.
Then:

(1) For any object M in C, there exists an injective resolution

of M . That means, there exists an complex I• and a morphism
ιM : M → I0 such that

Hj(I•) =

{

M (via ιM) if j = 0

0 if j 6= 0

(2) For any morphism f : M → N of C, and for any injective
resolutions (I•, ιM), (J•, ιN) of M and N (respectively), There
exists a morphism f̄ : I• → J• of complexes which commutes
with f . Forthermore, if there are two such morphisms f̄ and
f ′, then the two are homotopic.

Definition 5.10. Let C1 be an abelian category which has enough
injectives. Let F : C1 → C2 be a left exact functor to an abelian
category. Then for any object M of C1 we take an injective resolution
I•M of M and define

RiF (M) = H i(I•M).

and call it the derived functor of F .

Lemma 5.11. The derived functor is indeed a functor.

References



COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

06. Ext as a derived functor
Let C be an abelian category. For any object M of C, the extension

group Extj
C
(M,N) is defined to be the derived functor of the “hom”

functor
N 7→ HomC(M,N).

We note that the Hom functor is a “bifunctor”. We may thus
consider the right derived functor of • 7→ Hom(•, N) and that of
• 7→ Hom(M, •, N). Fortunately, both coincide: The extension group
Ext•

C
(M,N) may be calculated by using either an injective resolution

of the second variable N or a projective resoltuion of the first variable
M . See [1, Proposition 8.4,Corollary 8.5].

Example 6.1. Let us compute the extension groups ExtjZ(Z/36Z,Z/108Z).

(1) We may compute them by using an injective resolution

0→ Z/108Z→ Q/108Z→ Q/Z→ 0

of Z/108Z.
(2) We may compute them by using a free resolution

0← Z/36Z← Z← 36Z← 0

of Z/36Z.

Exercise 6.1. Compute an extension group Extj(M,N) for modules
M,N of your choice. (Please choose a non-trivial example).

In the last lecture we mentioned the notion of injective hulls. Although they are

not essential part of our lecture, students may find it interesting to calculate some

of the injective hulls of known modules. So we write down some definitions and

results related to them.

Definition 6.2. Let M be an R-module. An R-module E ⊃ M is
called an essential extension of M if every non-zero submodule of E
intersect M non-trivially. We denote this as E ⊃e M .

Such an essential extension is called maximal if no module properly
containing E is an essential extension of M .

Lemma 6.3. A module M is injective if and only if M has no proper
essential extensions.

Lemma 6.4. Let R be a ring. Let F ⊂M be R-modules. We consider
a family F of modules E which satisfy the following properties.

• E is an R-submodule of F which contains M .
• E is an essential extension of M .

Then:

(1) The set F has a maximal element.
(2) If F is an injective R-module, then any maximal element E of

F is injective.
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Theorem 6.5. For any R-module M , there exists an injective mod-
ule I which contains M whichis minimal among such. The module I
is unique up to a (non-unique) isomorphism.

Definition 6.6. Such I in the above theorem is called the injective
hull of M .

Injective hulls may then be used to obtain the “minimal injective resolution” of

a module.

Example 6.7. Let n be a positive integer. The injective hull of a
Z-module Z/nZ is equal to Z[ 1

n
]/nZ. Thus an injective resolution of

Z/nZ is given as follows.

0→ Z/nZ→ Z[
1

n
]/nZ→ Z[

1

n
]/Z→ 0

References

[1] S. Lang, Algebra (graduate texts in mathematics), Springer Verlag, 2002.
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07. Ext as a derived functor We recommend the book of Lang [1]
as a good reference. The treatment here follows the book for the most
part.

Theorem 7.1. Let C1 be an abelian category with enough injectives,
and let F : C1 → C2 be a covariant additive left functor to another
abelian category C2. Then:

(1) F ∼= R0F .
(2) For each short exact sequence

0 → M ′ → M → M ′′ → 0

and for each n ≥ 0 there is a natural homomorphism

δn : RnF (M ′′) → Rn+1F (M)

such that we obtain a long exact sequence

· · · → RnF (M ′) → RnF (M) → RnF (M ′′)
δn

→ Rn+1F (M ′) → . . . .

(3) δ is natural. That means, for a morphism of short exact se-
quences

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0




y





y





y

0 −−−→ N ′ −−−→ N −−−→ N ′′ −−−→ 0

the δ’s give a commutative diagram:

RnF (M ′′)
δn

−−−→ Rn+1F (M ′)




y





y

RnF (N ′′)
δn

−−−→ Rn+1F (N ′)

(4) For each injective objective object I of A and for each n > 0 we
have RnF (I).

The collection {RjF} of functors RjF is a “universal delta functor”.
See [1].

Lemma 7.2. Under the assumption of the previous theorem, for any
exact sequence 0 → M ′ → M → M ′′ → 0 of objects in C1, there
exists injective resolutions IM ′ , IM , IM ′′ of M ′,M,M ′′ respectively and
a commutative diagram

0 0 0




y





y





y

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0




y





y





y

0 −−−→ IM ′ −−−→ IM −−−→ IM ′′ −−−→ 0
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such that the diagram of resolutions is exact. Thus we obtain a diagram

0 0 0




y





y





y

0 −−−→ F (M ′) −−−→ F (M) −−−→ F (M ′′) −−−→ 0




y





y





y

0 −−−→ F (IM ′)
α

−−−→ F (IM)
β

−−−→ F (IM ′′) −−−→ 0

such that each row in the last line is exact.

Note that j-th cohomology of the complex F (IM) (respectively, F (IM ′), F (IM ′′))
gives the RjF (M)(respectively, (RjF (M ′), RjF (M ′′).) Using the res-
olution given in the lemma above, we may prove Theorem 7.1. Let us
describe the map δ in more detail when C2 is a category of modules
by “diagram chasing”. Namely, for x ∈ Rn(M ′′), let us show how to
compute δ(x).

(1) x ∈ Rn(M ′′) may be represented as a class [cx] of a cocycle
cx ∈ Ker(d : F (InM ′′) → F (In+1

M ′′ )).
(2) We take a “lift” c̃x ∈ F (InM) such that βn(c̃x) = cx. Note that

c̃x is no longer a cocycle.
(3) Consider ex = dc̃x ∈ F (In+1M). It is a coboundary and we

have β(ex) = 0.
(4) There thus exists an element ax ∈ F (InM ′) such that α(ax) = ex.

ax is no longer a coboundary but it is a cocycle.
(5) The cohomology class [ax] of ax is the required δ(x).

Such computation appears frequently when we deal with cohomolo-
gies.

Definition 7.3. Let A be a ring. Let M,N be A-modules. Then
an extension of N by M is a module L with a exact sequence

(E) 0 → N
α
→ L

β
→ M → 0.

of A-modules. Let

0 → N
α′

→ L′
β′

→ M → 0.

be another extension. Then the two extensions are said to be isomor-
phic if there exists a commutative diagram

0 −−−→ N
α

−−−→ L
β

−−−→ M −−−→ 0

=





y





y

=





y

0 −−−→ N
α′

−−−→ L′
β′

−−−→ M −−−→ 0.

Proposition 7.4. There exists a bijection between the isomorphism
classs of the extensions and elements of the Ext1A(M,N). The bijec-
tion is given by corresponding the extension (E) to the class δ(1N) ∈
Ext1(M,N) of the identity map 1N by δ associated to the exact sequence
(E).

See [1, XX,Exercise 27]

References

[1] S. Lang, Algebra (graduate texts in mathematics), Springer Verlag, 2002.



COHOMOLOGIES.

YOSHIFUMI TSUCHIMOTO

08. Tensor products and Tor

Definition 8.1. Let A be an associative unital (but not necessarily
commutative) ring. Let L be a right A-module. Let M be a left A-
module. For any (Z-)module N , an map

ϕ : L×M → N

is called an A-balanced biadditive map if

(1) ϕ(x1 + x2, y) = ϕ(x1, y) + ϕ(x2, y) (∀x1, ∀x2 ∈ L, ∀y ∈ M).
(2) ϕ(x, y1 + y2) = ϕ(x, y1) + ϕ(x, y2) (∀x ∈ L, ∀y1, ∀y2 ∈ M).
(3) ϕ(xa, y) = ϕ(x, ay) (∀x ∈ L, ∀y ∈ M, ∀a ∈ A).

Proposition 8.2. Let A be an associative unital (but not necessarily
commutative) ring. Then for any right A-module L and for any left A-
module M , there exists a (Z-)module XL,M together with a A-balanced
map

ϕ0 : L×M → XL,M

which is universal amoung A-balanced maps.

Definition 8.3. We employ the assumption of the proposition above.
By a standard argument on universal objects, we see that such object
is unique up to a unique isomorphism. We call it the tensor product

of L and M and denote it by

L⊗A M.

Lemma 8.4. Let A be an associative unital ring. Then:

(1) A⊗A M ∼= M .
(2) (L1 ⊕ L2)⊗A M ∼= (L1 ⊗M)⊕ (L2 ⊗A M).
(3) For any M , L 7→ L⊗A M is a right exact functor.
(4) For any right ideal J of A and for any A-module M , we have

(A/J)⊗A M ∼= M/J.M

In particular, if the ring A is commutative, then for any ideals I, J of
A, we have

(A/I)⊗A (A/J) ∼= A/(I + J)

Definition 8.5. For any left A-module M , the left derived functor
LjF (M) of FM = • ⊗A M is called the Tor functor and denoted by
TorAj (•,M).

By definition, TorAj (L,M) may be computed by using projective res-
olutions of L.

Exercise 8.1. Compute TorZj (Z/nZ,Z/mZ) for n,m ∈ Z>0.

References
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09. Cohomology of groups

Let G be a group. Let us consider a functor

FG : M 7→MG = {m ∈M ; g.m = m(∀g ∈ G)}

The functor is left-exact. The derived functor of this functor

Hj(G,M) = RjFG(M)

is called the j-th cohomology of G with coefficients in M . Let us
consider Z as a G-module with trivial G-action. Then we may easily
verify that

FG(M) = MG ∼= HomG(Z,M).

Thus we have

Hj(G,M) = ExtjG(Z,M).

To compute cohomologies of G, it is useful to use Z[G]-resolution of
Z. For any tuples g0, g1, g2, . . . , gt of G, we introduce a symbol

[g0, g1, g2, . . . , gt]

and we consider the following sequence
(∗G)

0← Z
d
←

⊕

g0∈G

Z · [g0]
d
←

⊕

g0,g1∈G

Z · [g0, g1]
d
←

⊕

g0,g1,g2∈G

Z · [g0, g1, g2]
d
← . . .

where ǫ, d are determined by the following rules.

d([g0]) = 1

d([g0, g1]) = [g1]− [g0]

d([g0, g1, g2]) = [g1, g2]− [g0, g2] + [g0, g1]

d([g0, g1, g2, g3]) = [g1, g2, g3]− [g0, g2, g3] + [g0, g1, g3]− [g0, g1, g2]

. . .

To see that the sequence ∗G is acyclic, we consider a homotopy

h([g0, g1, . . . , gt]) = [1, g0, g1, . . . , gt]

Exercise 9.1. Show that h ◦ d+ d ◦ h = id

Lemma 9.1. (1) Each of the modules that appears in the sequence

∗G admits an action of G determined by

g.[g0, g1, g2, . . . , gt] = [g · g0, g · g1, g · g2, . . . , g · gt]

(2)

Ct =
⊕

g0,g1,g2,...gt∈G

Z · [g0, g1, g2, . . . , gt]

is Z[G]-free
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There are several choices for the Z[G]-basis of Ct. One such is clearly

{[1, g1, g2, g3, . . . , gt]; g1, g2, . . . , gt ∈ G}.

It is traditional (and probably useful) to use another basis

{〈g1, g2, g3, . . . , gt〉; g1, g2, . . . , gt ∈ G}.

where

〈g1, g2, g3 . . . gt〉 = [1, g1, g1g2, g1g2g3, . . . , g1g2g3 . . . gt].

Conversely we have

[1, a1, a2, . . . , at] = 〈a1, a
−1
1 a2, a

−1
2 a3, . . . , a

−1
t−1at〉.

Definition 9.2. For any group G, the derived functor of a functor

FG : (G−modules)→ (modules)

defined by

M 7→MG = M/(Z− span{g.m−m; g ∈ G,M ∈M})

is called the homology of G with coefficients in M . We denote the
homology group LjFG(M) by Hj(G;M).

Lemma 9.3.
Hj(G;M) ∼= Tor

Z[G]
j (Z,M)

References
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Derived categories

We refer to [2],[1] for a good guide to the theory.
Main idea: Instead of dealing with an object of an additive category
C, we deal with complexes of C. But:

(1) We want to regard quasi-isomorphic complexes as the “same”.
(2) We want to identify two morphisms to be the same if they are

homotopic.

11.1. Cone of a complex. Assume we are talking about complexes
of objects in an additive category C.

Definition 11.1. [2, 4.1] For any complex X•, we define TX• to be
a complex defined by

(TX)i = X i+1, dTX = −dX .

Definition 11.2. [2, 4.3] Let u : X•
→ Y • be a morphism of com-

plexes. The cone C•

u of u is defined to be a graded object

Y •

⊕ TX•

equipped with the following differential:

d

(

y
x

)

=

(

dY u
0 −dX

)(

y
x

)

Idea 1: Instead of considering kernel and cokernel of a morphism u, we
consider its cone Cu.
For any u, we have morphisms (triangle):

X• u
→ Y •

ιY
→ C•

u

pTX

→ TX•.

Let us call such a triangle standard. Now if C is abelian, then for each
standard triangle as above we have the following long exact sequence:

· · · → Hk(X•) → Hk(Y •) → Hk(C•

u) → Hk+1(X•) → . . .

11.2. The category C(C).

Definition 11.3. For any additive category C, we define C(C) to
be The category of complexes of C.

11.3. The category K(C).

Definition 11.4. [2, 5.1] For any additive category C, we define
K(C) to be

(1) Ob(K(C)) = Ob(C(C)) (that means, objects of K(C) are com-
plexes).

(2) For any objects X•, Y • of K(C), we define

HomK(C)(X
•, Y •) = HomC(C)(X

•, Y •)/Homotopy

Even if C is abelian, K(C) is no longer abelian in general [2, 5.7]. But
K(C) has distinguished triangles, which are triangles isomorphic to
standard triangles.
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11.4. The cateogory D(C). We assume C is an abelian category. We
then add some inverses of quasi isomorphisms in K(C) to define D(C).
D(C) again is not necessarily be an abelian category, but it is a tri-

angulated category which has distinguished triangles which satisfy
certain axioms.
By considering only complexes which are bounded below, we may

define C+(C), K+(C), D+(C) etc.

Proposition 11.5. [2, 4.8] If C has enoufh injectives then D+(C) is
equivalent to K+(I(C)), where I(C) is the category of injective objects

in C.

So, in a sence, to consider an object X• of D+(C) is to consider an
injective resolution I• of X• and treat it up to homotopy.
For left-exact functor C1 → C2, we may “define” (the actual definiton

should be done more carefully. See [2])

RF : D+(C1) → D+(C2)

by
RF (X•) = F (I•)

where I• is an injective resolution of X•.
A good thing about treating derived functors in this way is that we

may easily treat derived functors of compositions:

R(F ◦G) ∼= (RF ) ◦ (RG).
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