\mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

YOSHIFUMI TSUCHIMOTO

No.02: definition of \mathbb{Z}_p

Let p be a prime ("base"). We would like to introduce a metric on \mathbb{Z} such that

 $n : \text{small} \iff n \text{ is divisible by powers of } p.$

Namely:

DEFINITION 2.1. Let p be a prime number.

(1) We define a *p*-adic norm $|\bullet|_p$ on \mathbb{Z} as follows.

$$|n|_p = \begin{cases} \frac{1}{p^k} & \text{if } n \neq 0 \text{ and } p^k | n \text{ and } p^{k+1} \not| n \\ 0 & \text{if } n = 0 \end{cases}$$

(2) We define a *p*-adic distance $d_p(\bullet, \bullet)$ on \mathbb{Z} as follows.

$$d_p(n,m) = |n-m|_p \qquad (n,m \in \mathbb{Z})$$

LEMMA 2.2. (1) $|\bullet|_d$ enjoys the following properties. (a) $|x|_p \ge 0$ ($\forall x \in \mathbb{Z}$). $|x|_p = 0 \iff x = 0$. (b) $|x+y|_p \le \max(|x|_p, |y|_p)$ ($\le (|x|_p + |y|_p)$. (c) $|xy|_p = |x|_p |y|_p$ (2) (\mathbb{Z}, d_p) is a metric space.

DEFINITION 2.3. A metric space (X, d) is said to be **complete** if

every Cauchy sequence of X converges to an element of X.

THEOREM 2.4. Let (X, d) be a metric space. There exists a complete metric space (\bar{X}, d) with an isometry $\iota : X \to \bar{X}$ such that X is dense in \bar{X} . Furthermore, \bar{X} is unique up to a unique isometry.

DEFINITION 2.5. Let (X, d) be a metric space. We call (\overline{X}, d) as in the above theorem **the completion** of (X, d).

DEFINITION 2.6. Let p be a prime number. We denote the completion of (\mathbb{Z}, d_p) by (\mathbb{Z}_p, d_p) and call it **the ring of** p-addic integers. Thus elements of \mathbb{Z}_p are p-addic integers.

THEOREM 2.7. \mathbb{Z}_p has a unique structure of a topological ring. Namely,

(1) There exists unique continuous maps

 $+: \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$

(addition) and

 $\times : \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$

(multiplication) which are extensions of the usual addition and multiplication of \mathbb{Z} .

(2) $(\mathbb{Z}_p, +, \times)$ is a commutative associative ring.

YOSHIFUMI TSUCHIMOTO

DEFINITION 2.8. Let p be a prime number. For any sequence $\{a_j\}_{j=0}^{\infty}$ such that $a_j \in \{0, 1, 2, 3, \ldots, p-1\}$, we consider a sequence $\{s_n\}$ defined by

$$s_n = \sum_{j=0}^n a_j p^j.$$

Then the sequence $\{s_n\}$ is a Cauchy sequence in \mathbb{Z}_p . We denote the limit of the sequence as

$$[0.a_0a_1a_2a_3\dots]_p.$$

EXERCISE 2.1. compute

$$[0.1]_3 + [0.2222...]_3$$