$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

YOSHIFUMI TSUCHIMOTO

No.03: \mathbb{Z}_{p} as a projective limit of $\left\{\mathbb{Z} / p^{k} \mathbb{Z}\right\}$
Definition 3.1. An ordered set Λ is said to be directed if for all $i, j \in \Lambda$ there exists $k \in \Lambda$ such that $i \leq k$ and $j \leq k$.

Definition 3.2. Let Λ be a directed set. Let $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of topological rings. Assume we are given for each pair of elements $(\lambda, \mu) \in \Lambda^{2}$ such that $\lambda \geq \mu$, a continuous homomorphisms

$$
\phi_{\mu \lambda}: X_{\lambda} \rightarrow X_{\mu} .
$$

We say that such a system $\left(\left\{X_{\lambda}\right\},\left\{\phi_{\mu \lambda}\right\}\right)$ is a projective system of topological rings if it satisfies the following axioms.
(1) $\phi_{\nu \mu} \phi_{\mu \lambda}=\phi_{\nu \lambda} \quad(\forall \lambda, \forall \mu \forall \nu$ such that $\lambda \geq \mu \geq \nu)$.
(2) $\phi_{\lambda \lambda}=\mathrm{id} \quad(\forall \lambda \in \Lambda)$.

Definition 3.3. Let $\mathcal{X}=\left(\left\{X_{\lambda}\right\},\left\{\phi_{\mu \lambda}\right\}\right)$ be a projective system of topological rings. Then we say that a projective limit $\left(X,\left\{\phi_{\lambda}\right\}\right)$ of X is given if
(1) X is a topological ring.
(2) $\phi_{\lambda}: X \rightarrow X_{\lambda}$ is a continuous homomorphism.
(3) $\phi_{\mu \lambda} \circ \phi_{\lambda}=\phi_{\mu}$ for $\forall \mu, \lambda$ such that $\lambda \geq \mu$.)
(4) $\left(X,\left\{\phi_{\lambda}\right\}\right)$ is a universal object among objects which satisfy (1)(3).

The "universal" here means the following: If $\left(Y, \psi_{\lambda}\right)$ satisfies
(1) Y is a topological ring.
(2) $\psi_{\lambda}: Y \rightarrow X_{\lambda}$ is a continuous homomorphism.
(3) $\phi_{\mu \lambda} \circ \psi_{\lambda}=\psi_{\mu}$ for $\forall \mu, \lambda$ such that $\lambda \geq \mu$.)

Then there exists a unique continuous homomorphism

$$
\Phi: Y \rightarrow X
$$

such that

$$
\psi_{\lambda}=\phi_{\lambda} \circ \Phi(\forall \lambda \in \Lambda) .
$$

Proposition 3.4. For any projective system of topological rings, a projective limit of the system exists. It is unique up to a unique isomorphism. (Hence we may call it the projective limit of the system.)

YOSHIFUMI TSUCHIMOTO

Definition 3.5. For any projective system $\left(X,\left\{\phi_{\lambda}\right\}\right)$ of topological rings, We denote the projective limit of it by

$$
\lim _{\lambda} X_{\lambda} .
$$

Note: projective limits of systems of topological spaces, rings, groups, modules, and so on, are defined in a similar manner.

Theorem 3.6.

$$
\mathbb{Z}_{p} \cong \lim _{k \rightarrow \infty}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)
$$

as a topological ring.
Corollary 3.7. \mathbb{Z}_{p} is a compact space.
Note: There are several ways to prove the result of the above corollary. For example, the ring \mathbb{Z} with the metric d_{p} is easily shown to be totally bounded.

Proposition 3.8. Each element of \mathbb{Z}_{p} is expressed uniquely as $\left[0 . a_{1} a_{2} a_{3} a_{4} \ldots\right]_{p} \quad\left(a_{i} \in\{0,1, \ldots, p-1\} \quad(i=1,2,3, \ldots)\right)$.
Exercise 3.1. Is $-4=1-5$ invertible in \mathbb{Z}_{5} ? (Hint: use formal expansion

$$
(1-x)^{-1}=1+x+x^{2}+\ldots
$$

is it possible to write down a correct proof to see that the result is true?)

