
Zp, Qp, AND THE RING OF WITT VECTORS

No.08: ring of Witt vectors (1) Preparations
From here on, we make use of several notions of category theory. Readers

who are unfamiliar with the subject is advised to see a book such as [?] for

basic definitions and first properties.

Let p be a prime number. For any commutative ring k of charac-
teristic p ̸= 0, we want to construct a ring W (k) of characteristic 0 in
such a way that:

(1) W (Fp) = Zp.
(2) W (•) is a functor. That means,

(a) For any ring homomorphism φ : k1 → k2 between rings of
characterisic p, there is given a unique ring homomorphism
W (φ) : W (k1) → W (k2).

(b) W (•) should furthermore commutes with compositions of
homomorphisms.

To construct W (k), we construct a new addition and multiplication
on a k-module

∏∞
j=1 k. The ring W (k) will then be called the ring

of Witt vectors. The treatment here essentially follows the treatment
which appears in [?, VI,Ex.46-49], with a slight modification (which
may or may not be good–it may even be wrong) by the author.

We first introduce a nice idea of Witt.

Definition 8.1. Let A be a ring (of any characteristic). Let T be
an indeterminate. We define the following copy of AZ>0 (as a set).

W1(A) = 1 + TA[[T ]] =

{
1 +

∞∑
j=1

yjT
j ; xn ∈ A(∀n)

}
For each element a(T ) ∈ 1+TA[[T ]], we will denote by (a(T ))W the

corresponding element in W1(A).

We will equip W1(A) with a ring structure. To do so we first make
use of “log”. In the following, we use infinite sums and infinite products
of elements of W1(A) = 1+TA[[T ]]. They are defined as limits of sums
and products with respect to the filtration topology defined in the usual
way.

Lemma 8.2. There is an well-defined map

LA = −T
d

dT
log(•) : 1 + TA[[T ]] → TA[[T ]].

If A contains an copy of Q, then the map is a bijection. The inverse
is given by

Tg(T ) 7→ exp

(
−
∫ T

0

g(s)ds

)
.

Proof. To see that L is well defined (that is, “defined over Z”), we
compute as follows.

−T
d

dT
log(1+Tf1) = −T (f ′

1+f1)(1+Tf1)
−1 = −T (f ′

1+f1)
∞∑
j=1

(−Tf1)
j
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The rest should be obvious.
Note: the condition A ⊃ Q is required to guarantee exictence of exponen-

tial

exp(•) =
∞∑
j=0

1

j!
•j

and existence of the integration
∫ T
0 g(s)ds. □

Definition 8.3. We equip TA[[T ]] with the usual addition and the
following (unusual) “coefficient-wise” multiplication:(

∞∑
j=1

a(j)T j

)
∗

(
∞∑
j=1

b(j)T j

)
=

∞∑
j=1

(a(j)b(j))T j

It is easy to see that TA[[T ]] forms a (unital associative) commutative
ring with these binary operations.

Definition 8.4. Let A be a ring which contains a copy of Q. Then
we define ring structure on W1(A) by putting

(f)W+(g)W = L−1
A (LA(f)+LA(g)), (f)W ·(g)W = L−1

A (LA(f)∗LA(g)).

Lemma 8.5. Let A be a ring which contains a copy of Q. For any
f, g ∈ W1(A), we have

(f)W + (g)W = (fg)W .

In particular, addition in W1(A) is defined over Z.

Proof. easy □
We may thus extend the definition +L on W1(A) to cases where the

condition A ⊃ Q is no longer satisfied.
We next see that the multiplication of W1(A) is also defined over Z.

To do so, we need the following lemma.

Lemma 8.6. Let A be any commutative ring. Then every element of
1 + TA[[T ]] is written uniquely as

∞∏
j=1

(1− xjT
j) (xj ∈ A).

Proof. We may use an expansion
∞∏
j=1

(1− xjT
j) ≡ −xnT

n + poly(x1, . . . , xn−1, T ) (mod T n+1)

to inductively determine xj. More precisely, for each n ∈ Z>0, let us
define a polynomial fn(X1, X2, . . . , Xn−1) in the following way:

fn(X1, . . . , Xn−1) = coeff(
n−1∏
j=1

(1−XjT
j), T n)

Then for any element 1 +
∑∞

j=1 yjT
j ∈ 1 + TA[[T ]], we define

x1 = −y1, xn = −yn + fn(x1, . . . , xn−1) (∀n > 1).

Then it is easy to verify that an equation

1 +
∞∑
j=1

yjT
j =

∞∏
j=1

(1− xjT
j)

holds. □
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Corollary 8.7. W1(A) = 1 + TA[[T ]] is topologically generated by

{(1− xjT
j)W ; xj ∈ A, j = 1, 2, 3, . . . }.

Lemma 8.8. Let d, e be positive integers. Let m be the least common
multiple of d, e. Then for any x, y ∈ A, we have

(1− xT d)W · (1− yT e)W =
(
(1− xm/dym/eTm)de/m

)
W

= (
de

m
) ·
(
1− xm/dym/eTm

)
W
.

Proof. let d, e be positive integers. Let m be the least common
multiple of d, e. We have,

L(1− xT d) ∗ L(1− yT e) =
dxT d

1− xT d
∗ eyT e

1− yT e
= de(

∞∑
i=1

(xT d)i ∗
∞∑
j=1

(yT e)j)

=de
∞∑
u=1

xmu/dymu/eTmu =
dexm/dym/eTm

1− xm/dym/eTm
= −de

m

d

dT
log(1− xm/dym/eTm)

=L((1− xm/dym/eTm)de/m).

□
Definition 8.9. Let A be any commutative ring. Then we define an

addition + and a multiplication · on W1(A) who satisfy the following
requirements:

(1) (f)W + (g)W = (fg)W .
(2) For any positive integer d, e, Let m be the least common mul-

tiple of d, e. Then for any x, y ∈ A, we have

(1− xT d)W · (1− yT e)W =

((
1− xm/dym/eTm

) de
m

)
W

.

(3) the summation and the multiplication operations are continu-
ous.

(Note that Lemma 8.6 guarantees the existence and the uniqueness
of such multiplication.)

Theorem 8.10. Let A be any commutative ring. Then:

(1) Any element of W1(A) is written uniquely as
∞∑
j=1

(1− xjT
j)W .

(2) W1(A) is a commutative ring.
(3) When A ⊃ Q, the ring W1(A) is isomorphic to the ring (TA[[T ]],+, ∗)

via the map LA = −T d
dT

log(•).

Proof. When A ⊃ Q, the statements trivially hold. This implies
in particular that rules such as distributivity and associativity hold for
universal cases (that means, for formal power series with indeterminate
coefficients). Thus we conclude by specialzation arguments that the
rule also hold for any ring A.

□
Definition 8.11. For any commutative ring A, elements of W1(A)

are called universal Witt vectors over A. The ring W1(A) is called
the ring of universal Witt vectors over A.
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Proposition 8.12. W1(•) is uniquely determined by the following
properties.

(1) (f)W + (g)W = (fg)W (∀f, g ∈ 1 + TA[[T ]]).
(2) (1− xT )W (1− yT )W = (1− (xy)T )W (∀x, y ∈ A).
(3) The multiplication map is continuous.
(4) The multiplication map is functorial.

Proof. We only need to prove the requirement (2) of Definition
8.9. With the help of distributive law, the requirement is satisfied if an
equation

(#) (1−xT a)W (1−yT b)W = (1−xm/aym/bTm)ab/m (m = l.c.m(a, b))

holds for each (a, b) ∈ (Z>0)
2.

To that aim, we first deal with a special case where x = αa, y = βb,
A = C[α, β], α, β algebraically independent over C. In that case we
may easily decompose the polynomials (1 − xT a) and (1 − yT b) and
then we use the distributive law to see that the requirement actually
holds. Indeed, let us put

ζk = exp(2π
√
−1/k)

and compute as follows.

(1− xT a)W (1− yT b)W

=
∑

j,l
(1− ζja(α)T )W (1− ζ lb(β)T )W

=
∑

j,l
(1− ζjaζ

l
bαβT )W

=

(∏
l

(1− ζalb αaβaT a)

)
W

=

(∏
l′

(1− xβaT aζ l
′

b/d)
d

)
W

(d = gcd(a, b))

=
(
(1− xa/dyb/dT ab/d)d

)
W
.

We second deal with a case where A = Z[x, y], x, y algebraically
independent over C. In that case we take a look at an inclusion

ι : Z[x, y] ↪→ C[α, β].
and consider W1(ι). It is easy to see that W1(ι) is injection so that
the equation (#) is also true in this case. The general case now follows
from specialization argument. □


