\mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

No.10: The ring of *p*-adic Witt vectors revisited

LEMMA 10.1. Let A be a commutative ring. Then:

(1) For any $a, b \in A$, we have

 $[a] \cdot [b] = [ab]$

(2) If $a \in A$ satisfies $a^q = a$ for some positive integer q, then we have

$$[a]^{\cdot q} = [a].$$

(3) Let q be a positive integer. If $b \in A$ satisfies

 $\forall n \in \mathbb{Z}_{>0} \exists b_n \in A \text{ such that } b_n^{q^n} = b,$

then we have

$$\forall n \in \mathbb{Z}_{>0} \exists c_n \in \mathcal{W}_1(A) \text{ such that } c_n^{q^n} = [b].$$

Recall that the ring of *p*-adic Witt vectors is a quotient of the ring of universal Witt vectors. We have therefore a projection $\varpi : \mathcal{W}_1(A) \to \mathcal{W}^{(p)}(A)$. But in the following we intentionally omit to write ϖ .

PROPOSITION 10.2. Let p be a prime number. Let A be a ring of characteristic. Then:

(1) Every element of $\mathcal{W}^{(p)}(A)$ is written uniquely as

$$\sum_{j=0}^{\infty} V_p^j([x_j]) \qquad (x_j \in A).$$

(2) For any $x, y \in A$, we have

$$V_p^n([x]) \cdot V_p^m([y]) = V_p^{n+m}([x^{p^m}y^{p^n}]).$$

(3) A map

$$\varphi: \mathcal{W}^{(p)}(A) \ni \sum_{j=0}^{\infty} V_p^n([x_j]) \mapsto x_0 \in A$$

is a ring homomorphism from $(\mathcal{W}^{(p)}, +, \cdot)$ to $(A, +, \times)$.

- (4) $\operatorname{Ker}(\varphi) = \operatorname{Image}(V_p).$
- (5) An element $x \in W^{(p)}$ is invertible in $W^{(p)}$ if and only if $\varphi(x)$ is invertible in A.

COROLLARY 10.3. If k is a field of characteristic $p \neq 0$, then $W^{(p)}$ is a local ring with the residue field k. If furthermore the field k is **perfect** (that means, every element of k has a p-th root in k), then every non-zero element of $W^{(p)}$ may be writen as

$$p^k \cdot x$$
 $(k \in \mathbb{N}, x \in (\mathcal{W}^{(p)})^{\cdot}$ (i.e. x:invertible))

Since any integral domain can be embedded into a perfect field, we deduce the following

$\mathbb{Z}_P,\ \mathbb{Q}_P,$ AND THE RING OF WITT VECTORS

COROLLARY 10.4. Let A be an integral domain of characteristic $p \neq 0$. Then $W^{(p)}(A)$ is an integral domain of characteristic 0.

PROOF. $\mathcal{W}^{(p)}(\iota)$ is always an injection when ι is.