CONGRUENT ZETA FUNCTIONS. NO. 2

YOSHIFUMI TSUCHIMOTO

In this lecture we define and observe some properties of conguent zeta functions.
existence of finite fields II.
For any prime $p, \mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. To construct $\mathbb{F}_{p^{r}}$ for r,
(1) We find an irreducible polynomial $u(X) \in \mathbb{F}_{p}[X]$ of degree r. (Such a thing exists always.)
(2) $K=\mathbb{F}_{p}[X] /(u(X))$ is a field with p^{r} elements. It is an extension field of \mathbb{F}_{p} generated by the class $a=X$ of X in K.
(3) In other words, $K=\mathbb{F}_{p}[a]$ where a is a root of u.
(4) The isomorphism class of K is independent of the choice of u.

Proof of Lemma 1.3 (5). We prove the following more general result
Lemma 2.1. Let K be a field. Let G be a finite subgroup of K^{\times}(=multiplicative group of K). Then G is cyclic.

Proof. We first prove the lemma when $|G|=\ell^{k}$ for some prime number ℓ. In such a case Euler-Lagrange theorem implies that any element g of G has an order ℓ^{s} for some $s \in \mathbb{N}, s \leq k$. Let $g_{0} \in G$ be an element which has the largest order m. Then we see that any element of G satisfies the equation

$$
x^{m}=1 .
$$

Since K is a field, there is at most m solutions to the equation. Thus $|G| \leq m$. So we conclude that the order m of g_{0} is equal to $|G|$ and that G is generated by g_{0}.

Let us proceed now to the general case. Let us factorize the order $|G|$:

$$
|G|=\ell_{1}^{k_{1}} \ell_{2}^{k_{2}} \ldots \ell_{t}^{k_{t}} \quad\left(\ell_{1}, \ell_{2}, \ldots, \ell_{t}: \text { prime }, k_{1}, k_{2}, \ldots, k_{t} \in \mathbb{Z}_{>0}\right)
$$

Then G may be decomposed into product of p-subgroups

$$
G=G_{1} \times G_{2} \times \cdots \times G_{t} \quad\left(\left|G_{j}\right|=\ell_{j}^{k_{j}}(j=1,2,3, \ldots, t)\right) .
$$

By using the first step of this proof we see that each G_{j} is cyclic. Thus we conclude that G is also a cyclic group.

Exercise 2.1. Let G be a finite abelian group. Assume we have a decomposition $|G|=m_{1} m_{2}$ of the order of G such that m_{1} and m_{2} are coprime. Then show the following:
(1) Let us put

$$
H_{j}=\left\{g \in G ; g^{m_{j}}=e_{G}\right\} \quad(j=1,2)
$$

Then H_{1}, H_{2} are subgroups of G.
(2) $\left|H_{j}\right|=m_{j}(j=1,2)$.
(3) We have

$$
G=H_{1} H_{2} .
$$

Exercise 2.2. Let G_{1}, G_{2} be finite cyclic groups. Assume $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are coprime. Show that $G_{1} \times G_{2}$ is also cyclic.
2.1. Affine schemes. We define affine schemes as a representable functor.

Definition 2.2. Let R be a ring. Then we denote by $\operatorname{Spec}(R)$ the affine scheme with coordinate ring R.

For any affine scheme $\operatorname{Spec}(R)$ and for any ring S, we define the S-valued point of $\operatorname{Spec}(R)$ by

$$
\operatorname{Spec}(R)(S)=\operatorname{Hom}_{\mathrm{ring}}(R, S)
$$

Lemma 2.3. Let k be a ring. Let $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be a set of equations in n-variables $X_{1}, X_{2}, \ldots, X_{n}$ over k. Let us put

$$
A=k\left[X_{1}, X_{2}, \ldots, X_{n}\right] /\left(f_{1}, f_{2}, \ldots, f_{m}\right)
$$

Then we have a natural identification

$$
V\left(f_{1}, f_{2}, \ldots, f_{m}\right)(K)=\operatorname{Spec}(A)(K)
$$

for any algebra K over k.
Corollary 2.4. We employ the assumption as the Lemma. Then:
(1) When the "target algebra" K is given, the set of solutions $V\left(f_{1}, f_{2}, \ldots, f_{m}\right)(K)$ depends only on the affine coordinate ring A.
(2) For any element $P \in \operatorname{Spec}(A)(K)$, the "evaluation map"

$$
A \ni f \mapsto \operatorname{eval}_{P}(f) \in K
$$

is defined in an obvious way. Thus every element of A may be regarded as a K-valued function on $\operatorname{Spec}(A)(K)$.

2.2. localization.

Definition 2.5. Let f be an element of a commutative ring A. Then we define the localization A_{f} of A with respect to f as a ring defined by

$$
A_{f}=A[Y] /(Y f-1)
$$

where Y is a indeterminate.
Lemma 2.6. When K is a field, then we have a canonical identification

$$
\operatorname{Spec}\left(A_{f}\right)(K)=\left\{P \in \operatorname{Spec}(A)(K) ; \operatorname{eval}_{P}(f) \neq 0\right\}
$$

