CONGRUENT ZETA FUNCTIONS. NO. 3

YOSHIFUMI TSUCHIMOTO

projective space and projective varieties.
Definition 3.1. Let R be a ring. A polynomial $f\left(X_{0}, X_{1}, \ldots, X_{n}\right) \in$ $R\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ is said to be homogenius of degree d if an equality

$$
f\left(\lambda X_{0}, \lambda X_{1}, \ldots, \lambda X_{n}\right)=\lambda^{d} f\left(X_{0}, X_{1}, \ldots, X_{n}\right)
$$

holds as a polynomial in $n+2$ variables $X_{0}, X_{1}, X_{2}, \ldots, X_{n}, \lambda$.
For any homogeneous polynomial $F\left(X_{0}, X_{1}, \ldots, X_{n}\right)$, we may obtain its inhomogenization as follows:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(1, X_{1}, \ldots, X_{n}\right) .
$$

Conversely, for any inhomogeneous polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ of degree d, we may obtain its homogenization as follows:

$$
F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=f\left(X_{1} / X_{0}, \ldots, X_{n} / X_{0}\right) X_{0}^{d}
$$

Definition 3.2. Let k be a field.
(1) We put

$$
\mathbb{P}^{n}(k)=\left(k^{n+1} \backslash\{0\}\right) / k^{\times}
$$

and call it (the set of k-valued points of) the projective space.
The class of an element $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ in $\mathbb{P}^{n}(k)$ is denoted by $\left[x_{0}: x_{1}: \cdots: x_{n}\right]$.
(2) Let $f_{1}, f_{2}, \ldots, f_{l} \in k\left[X_{0}, \ldots, X_{n}\right]$ be homogenious polynomials.

Then we set
$V_{h}\left(f_{1}, \ldots, f_{l}\right)=\left\{\left[x_{0}: x_{1}: x_{2}: \ldots x_{n}\right] ; f_{j}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)=0 \quad(j=1,2,3, \ldots, l)\right\}$.
and call it (the set of k-valued point of) the projective variety defined by $\left\{f_{1}, f_{2}, \ldots, f_{l}\right\}$.
(Note that the condition $f_{j}(x)=0$ does not depend on the choice of the representative $x \in k^{n+1}$ of $[x] \in \mathbb{P}^{n}(k)$.)

Lemma 3.3. We have the following picture of \mathbb{P}^{2}.
(1)

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \coprod \mathbb{P}^{1}
$$

That means, \mathbb{P}^{2} is divided into two pieces $\{Z \neq 0\}=\complement V_{h}(Z) a$ $n d V_{h}(Z)$.
(2)

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \cup \mathbb{A}^{2} \cup \mathbb{A}^{2} .
$$

That means, \mathbb{P}^{2} is covered by three "open sets" $\{Z \neq 0\},\{Y \neq$ $0\},\{X \neq 0\}$. Each of them is isomorphic to the plane (that is, the affine space of dimension 2).

