CONGRUENT ZETA FUNCTIONS. NO. 5

YOSHIFUMI TSUCHIMOTO

For any projecvite variety V over a field \mathbb{F}_{q}, we may define its congruent zeta function $Z\left(V / \mathbb{F}_{q}, T\right)$ likewise for the affine varieties.

We quote the famous Weil conjecture
Conjecture 5.1 (Now a theorem ${ }^{1}$). Let X be a projective smooth variety of dimension d. Then:
(1) (Rationality) There exists polynomials $\left\{P_{i}\right\}$ such that

$$
Z(X, T)=\frac{P_{1}(X, T) P_{3}(X, T) \ldots P_{2 d-1}(X, T)}{P_{0}(X, T) P_{2}(X, T) \ldots P_{2 d}(X, T)} .
$$

(2) (Integrality) $P_{0}(X, T)=1-T, P_{2 d}(X, T)=1-q^{d} T$, and for each r, P_{r} is a polynomial in $\mathbb{Z}[T]$ which is factorized as

$$
P_{r}(X, T)=\prod\left(1-a_{r, i} T\right)
$$

where $a_{r, i}$ are algebraic integers.
(3) (Functional Equation)

$$
Z\left(X, \frac{1}{q^{d} T}\right)= \pm q^{\frac{d x}{2}} T^{\chi} Z(t)
$$

where $\chi=(\Delta . \Delta)$ is an integer.
(4) (Rieman Hypothesis) each $a_{r, i}$ and its conjugates have absolute value $q^{r / 2}$.
(5) If X is the specialization of a smooth projective variety X over a number field, then the degeee of $P_{r}(X, T)$ is equal to the r-th Betti number of the complex manifold $X(\mathbb{C})$. (When this is the case, the number χ above is equal to the "Euler characteristic" $\chi=\sum_{i}(-1)^{i} b_{i}$ of $\left.X(\mathbb{C}).\right)$
It is a profound theorem, relating the number of rational points $X\left(\mathbb{F}_{q}\right)$ of X over finite fields and the topology of $X(\mathbb{C})$.

For a further study we recommend [1, Appendix C],[2], [3].

References

[1] R. Hartshorne, Algebraic geometry, Springer Verlag, 1977.
[2] J. S. Milne, Étale cohomology, Princeton University Press, 1980.
[3] James S. Milne, Lectures on etale cohomology (v2.21), 2013, Available at www.jmilne.org/math/, p. 202.

[^0]
[^0]: ${ }^{1}$ There are a lot of people who contributed. See the references.

