Congruent zeta functions. No.5

Yoshifumi Tsuchimoto

For any projecvite variety $ V$ over a field % latex2html id marker 658
$ \mathbb{F}_q$, we may define its congruent zeta function % latex2html id marker 660
$ Z(V/\mathbb{F}_q,T)$ likewise for the affine varieties.

We quote the famous % latex2html id marker 598
\fbox{Weil conjecture}

CONJECTURE 5.1 (Now a theorem 1)   Let $ X$ be a projective smooth variety of dimension $ d$. Then:
  1. (Rationality) There exists polynomials $ \{P_i\}$ such that

    $\displaystyle Z(X,T)=
\frac{P_1(X,T)P_3(X,T)\dots P_{2 d-1} (X,T)}
{P_0(X,T)P_2(X,T) \dots P_{2 d}(X,T)} .
$

  2. (Integrality) $ P_0(X,T)=1-T$, % latex2html id marker 680
$ P_{2 d}( X,T)=1-q^d T$, and for each $ r$, $ P_r$ is a polynomial in $ \mathbb{Z}[T]$ which is factorized as

    $\displaystyle P_r(X,T)=\prod (1-a_{r,i} T)
$

    where $ a_{r,i}$ are algebraic integers.
  3. (Functional Equation)

    % latex2html id marker 692
$\displaystyle Z(X,\frac{1}{q^d T})=\pm q^{\frac{d \chi}{2} }T^\chi Z(t)
$

    where $ \chi=(\Delta.\Delta)$ is an integer.
  4. (Rieman Hypothesis) each $ a_{r,i}$ and its conjugates have absolute value % latex2html id marker 698
$ q^{r/2}$.
  5. If $ X$ is the specialization of a smooth projective variety $ X$ over a number field, then the degeee of $ P_r(X,T)$ is equal to the $ r$-th Betti number of the complex manifold $ X(\mathbb{C})$. (When this is the case, the number $ \chi$ above is equal to the “Euler characteristic” $ \chi=\sum_i (-1)^i b_i $ of $ X(\mathbb{C})$.)

It is a profound theorem, relating the number of rational points % latex2html id marker 716
$ X(\mathbb{F}_q) $ of $ X$ over finite fields and the topology of $ X(\mathbb{C})$.

For a further study we recommend [1, Appendix C],[2], [3].