CONGRUENT ZETA FUNCTIONS. NO. 6

YOSHIFUMI TSUCHIMOTO

6.1. Legendre symbol.

Definition 6.1. Let p be an odd prime. Let a be an integer which is not divisible by p. Then we define the Legendre symbol $\left(\frac{a}{p}\right)$ by the following formula.

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if }\left(X^{2}-a\right) \text { is irreducible over } \mathbb{F}_{p} \\ -1 & \text { otherwise }\end{cases}
$$

We further define

$$
\left(\frac{a}{p}\right)=0 \text { if } a \in p \mathbb{Z}
$$

Lemma 6.2. Let p be an odd prime. Then:
(1) $\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p$
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$

We note in particular that $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$.
Definition 6.3. Let p, ℓ be distinct odd primes. Let λ be a primitive ℓ-th root of unity in an extension field of \mathbb{F}_{p}. Then for any integer a, we define a Gauss sum τ_{a} as follows.

$$
\tau_{a}=\sum_{t=1}^{\ell-1}\left(\frac{t}{\ell}\right) \lambda^{a t}
$$

τ_{1} is simply denoted as τ.
Lemma 6.4. (1) $\tau_{a}=\left(\frac{a}{\ell}\right) \tau$.
(2) $\sum_{a=0}^{l-1} \tau_{a} \tau_{-a}=\ell(\ell-1)$.
(3) $\tau^{2}=(-1)^{(\ell-1) / 2} \ell\left(=\ell^{*}\right.$ (say)).
(4) $\tau^{p-1}=\left(\ell^{*}\right)^{(p-1) / 2}$.
(5) $\tau^{p}=\tau_{p}$.

Theorem 6.5.
$\left(\frac{p}{\ell}\right)=\left(\frac{\ell^{*}}{p}\right)\left(\right.$ where $\left.\ell^{*}=(-1)^{(\ell-1) / 2} \ell\right)$
$\left(\frac{-1}{\ell}\right)=(-1)^{(\ell-1) / 2}$
$\left(\frac{2}{\ell}\right)=(-1)^{\left(\ell^{2}-1\right) / 8}$
p-dependence of zeta functions is important topic. We are not going to talk about that in too much detail but let us explain a little bit.

Let us define the zeta function of a category $\mathcal{C}[1]$.

$$
\zeta(s, \mathcal{C})=\prod_{P \in P(\mathcal{C})}\left(1-N(P)^{-s}\right)^{-1}
$$

where P runs over all finite simple objects.

- P : finite $\stackrel{\text { def }}{\Longleftrightarrow} N(P) \stackrel{\text { def }}{=} \# \operatorname{End}(P)<\infty$.
- P : simple $\stackrel{\text { def }}{\Longleftrightarrow} \operatorname{Hom}(P, Y) \backslash\{0\}$ consists of mono morphisms.

For any commutative ring A, an A-module M is simple if and only if $M \cong A / \mathfrak{m}$ for some maximal idea \mathfrak{m} of A. We have thus:

$$
\begin{aligned}
\zeta(s,(A \text {-modules })) & =\prod_{\substack{\mathfrak{m} \in \operatorname{Spm}(A) \\
\#(A / \mathfrak{m})<\infty}}\left(1-\#(A / \mathfrak{m})^{-s}\right)^{-1} \\
& =\prod_{p: \operatorname{prime}} \prod_{\substack{\mathfrak{m} \in \operatorname{Spm}(A) \\
\mathbb{F}_{c} c A / \mathfrak{m} \\
\left[A / \mathbb{m}_{p}\right)<\infty}}\left(1-\#(A / \mathfrak{m})^{-s}\right)^{-1} \\
& =\prod_{p} \prod_{\substack{\mathfrak{m} \in \operatorname{Spm}(A / p) \\
\mathbb{F}_{p} \subset / \mathfrak{m} \\
\left[(A / p) / \mathfrak{m}: \mathbb{F}_{p}<\infty\right.}}\left(1-\#((A / p) / \mathfrak{m})^{-s}\right)^{-1} \\
& =\prod_{p} \zeta(s,(A / p) \text {-modules }) .
\end{aligned}
$$

Let us take a look at the last line. It sais that the zeta is a product of zeta's on A / p. Let us fix a prime number p, put $\bar{A}=A / p$, and concentrate on \bar{A} to go on further.

$$
\begin{gathered}
\zeta(s,(A / p) \text {-modules })=\prod_{\substack{\mathfrak{m} \in \operatorname{Spm}(\bar{A}) \\
\left[\bar{A} / \mathfrak{m}: \mathbb{F}_{p}\right]<\infty}}\left(1-\#(\bar{A} / \mathfrak{m})^{-s}\right)^{-1} \\
Z\left(\operatorname{Spec}(\bar{A}) / \mathbb{F}_{p}, T\right)=\exp \left(\sum_{r=1}^{\infty}\left(\operatorname{Spec}(\bar{A})\left(\mathbb{F}_{p^{r}}\right), T\right)\right) \\
=\prod_{\mathfrak{m} \in \operatorname{Spm}(A)} \exp \left(\sum_{r=1}^{\infty}\left(\operatorname{Spec}(\bar{A} / \mathfrak{m})\left(\mathbb{F}_{p^{r}}\right), T\right)\right) \\
Z\left(\mathbb{F}_{q^{e}} / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{e \mid r} \frac{e}{r} T^{r}\right)=\left(1-T^{e}\right)^{-1} \\
\zeta\left(s, \mathbb{F}_{p^{e}}-\text { modules }\right)=Z\left(\operatorname{Spec}\left(\mathbb{F}_{p^{e}}\right) / \mathbb{F}_{p}, p^{s}\right)
\end{gathered}
$$

We conclude:
Proposition 6.6. Let A be a commutative ring. Then:
(1) We have a product formula.

$$
\zeta(s,(A \text {-modules }))=\prod_{p} \zeta(s,(A / p) \text {-modules })
$$

(2) ζ is obtained by substituting T in the congruent zeta function by p^{s}.

$$
\zeta(s,(A / p) \text {-modules })=Z\left(\operatorname{Spec}(A / p) / \mathbb{F}_{p}, p^{s}\right)
$$

References

[1] N. Kurokawa, Zeta functions of categories, proc.japan.acad 72 (1996), no. 10, 221-222.

