CONGRUENT ZETA FUNCTIONS. NO. 7

YOSHIFUMI TSUCHIMOTO

7.1. Jacobi symbol.

Definition 7.1. Let m be a positive odd integer. Let us factor m :

$$
m=\prod_{i} p_{i}^{e_{i}}
$$

where p_{i} are primes. Then for any $n \in \mathbb{Z}$, we define Jacobi symbols as follows

$$
\left(\frac{n}{m}\right)=\prod_{i}\left(\frac{n}{p_{i}}\right)^{e_{i}}
$$

We further define

$$
\left(\frac{a}{p}\right)=0 \text { if } a \in p \mathbb{Z}
$$

Theorem 7.2 (quadratic reciprocity theorem). For any positive odd integers n, m, we have

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{(m-1)(n-1) / 4}
$$

Theorem 7.3. Let n be a postive odd integer. Then:
(1) $\left(\frac{-1}{m}\right)=(-1)^{(m-1) / 2}$.
(2) $\left(\frac{2}{m}\right)=(-1)^{\left(m^{2}-1\right) / 8}$.

Exercise 7.1. $p=113357$ is a prime. (You may use the fact without proving it.) Is there any integer n such that

$$
n^{2}=11351 \text { in } \mathbb{Z} / p \mathbb{Z} ?
$$

If so, can you find such n ?

A litte appendix. (The following is borrowed from Wikipedia("Riemann zeta function",Japanese version,May 2019))

$$
\begin{aligned}
& \zeta(s)=\sum_{s=1}^{\infty} \frac{1}{n^{s}}=\prod\left(1-\frac{1}{p^{s}}\right)^{-1} \\
& \log (\zeta(s))=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right) \\
&=\sum_{p} \sum_{n=1}^{\infty} \frac{1}{n p^{n s}} \\
&=\sum_{p} \sum_{n=1}^{\infty} \frac{1}{n p^{n s}} \\
&=s \sum_{n=1}^{\infty} \frac{1}{n} \sum_{p} \int_{p^{n}}^{\infty} x^{-s-1} d x \\
&=s \sum_{n=1}^{\infty} \frac{1}{n} \int_{1}^{\infty}\left(\sum_{p}\left[? p \leq x^{1 / n}\right]\right) x^{-s-1} d x \\
&=s \sum_{n=1}^{\infty} \frac{1}{n} \int_{1}^{\infty} \pi\left(x^{1 / n}\right) x^{-s-1} d x \\
&=\int_{1}^{\infty} \Pi(x) x^{-s-1} d x
\end{aligned}
$$

here we have put

$$
\pi(x)=\#\{p ; p \leq x\}, \quad \Pi(x)=\sum_{n=1}^{\infty} \frac{1}{n} \pi\left(x^{1 / n}\right)
$$

Note also that we have used $\frac{1}{p^{n s}}=s \int_{p^{n}}^{\infty} x^{-s-1} d x$.

