CONGRUENT ZETA FUNCTIONS. NO.8

YOSHIFUMI TSUCHIMOTO

plane conic

DEFINITION 8.1. Let k be a field. A **projective transformation** of $\mathbb{P}^n = \mathbb{P}^n(k)$ is a map

$$f: \mathbb{P}^n \to \mathbb{P}^n$$

which is given by a non-degenerate matrix $A \in GL_{n+1}(k)$ as follows:

$$f([v]) = [A.v] \qquad (v \in k^{n+1})$$

where [v] is the class of $v \in k^{n+1}$ in \mathbb{P}^n .

We would like to prove the following proposition.

PROPOSITION 8.2. Let $F = F(X, Y, Z) \in \mathbb{F}_q[X, Y, Z]$ be a homogenious polynomial of degree 2. We assume F is irreducible over $\overline{\mathbb{F}_q}$. Let us put $C = V_h(F)$. Then:

- (1) There exists at least one \mathbb{F}_q -valued point P in $V_h(F)$.
- (2) For any line L passing through P defined over \mathbb{F}_q , the intersection $L \cap C$ consists of two \mathbb{F}_q -valued points P and Q_L except for a case where L contacts C.
- (3) There exists a projective change of coordinate $f: \mathbb{P}^2 \to \mathbb{P}^2$ such that $f(V_h(F)) = V_h(XY Z^2)$.
- (4) The congruent zeta function of C is always equal to the congruent zeta function of \mathbb{P}^1 .

LEMMA 8.3. We have the following picture of \mathbb{P}^2 .

(1)

$$\mathbb{P}^2 = \mathbb{A}^2 \prod \mathbb{P}^1.$$

That means, \mathbb{P}^2 is divided into two pieces $\{Z \neq 0\} = \mathbb{C}V_h(Z)$ and $V_h(Z)$.

(2)

$$\mathbb{P}^2 = \mathbb{A}^2 \cup \mathbb{A}^2 \cup \mathbb{A}^2.$$

That means, \mathbb{P}^2 is covered by three "open sets" $\{Z \neq 0\}, \{Y \neq 0\}, \{X \neq 0\}$. Each of them is isomorphic to the plane (that is, the affine space of dimension 2).

Using the Lemma and the Proposition, we may easily compute the zeta function of a non-degenerate cubic equation

$$a_1X^2 + a_2XY + a_3Y^2 + b_1X + b_2Y + c$$

in \mathbb{A}^2 . (See the exercise below.)

EXERCISE 8.1. Let p be a prime. Compute the congruent zeta functions of the following two equations (varieties) over \mathbb{F}_p .

- (1) $V(X^2 + Y^2 1) \subset \mathbb{A}^2$.
- (2) $V(1+Y^2) \subset \mathbb{A}^1$.
- (3) $V_h(X^2 + Y^2 Z^2) \subset \mathbb{P}^2$.

Is there any relation between them? (Why?)

YOSHIFUMI TSUCHIMOTO

For the sake of completeness, we should have shown the following lemma.

LEMMA 8.4. Let p be an odd prime. Let ζ be a primitive 8-th root of unity in $\overline{\mathbb{F}_p}$. That means, ζ is a root of $X^4 + 1 \in \mathbb{F}_p[X]$. Let us put $x = \zeta + \zeta^{-1}$. Then:

- (1) $x^2 = 2$.
- (2) $x^p x = 0$ if $p = \pm 1 \mod 8$.
- (3) $x^p + x = 0$ if $p = \pm 3 \mod 8$.
- (4) $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

See the book of Serre (cited in No.01) for a proof.