## CONGRUENT ZETA FUNCTIONS. NO. 8

YOSHIFUMI TSUCHIMOTO

## plane conic

Definition 8.1. Let $k$ be a field. A projective transformation of $\mathbb{P}^{n}=\mathbb{P}^{n}(k)$ is a map

$$
f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}
$$

which is given by a non-degenerate matrix $A \in \mathrm{GL}_{n+1}(k)$ as follows:

$$
f([v])=[A . v] \quad\left(v \in k^{n+1}\right)
$$

where [ v ] is the class of $v \in k^{n+1}$ in $\mathbb{P}^{n}$.
We would like to prove the following proposition.
Proposition 8.2. Let $F=F(X, Y, Z) \in \mathbb{F}_{q}[X, Y, Z]$ be a homogenious polynomial of degree 2 . We assume $F$ is irreducible over $\overline{\mathbb{F}_{q}}$. Let us put $C=V_{h}(F)$. Then:
(1) There exists at least one $\mathbb{F}_{q}$-valued point $P$ in $V_{h}(F)$.
(2) For any line $L$ passing through $P$ defined over $\mathbb{F}_{q}$, the intersection $L \cap C$ consists of two $\mathbb{F}_{q}$-valued points $P$ and $Q_{L}$ except for a case where $L$ contacts $C$.
(3) There exists a projective change of coordinate $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $f\left(V_{h}(F)\right)=V_{h}\left(X Y-Z^{2}\right)$.
(4) The congruent zeta function of $C$ is always equal to the congruent zeta function of $\mathbb{P}^{1}$.

Lemma 8.3. We have the following picture of $\mathbb{P}^{2}$.
(1)

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \coprod \mathbb{P}^{1}
$$

That means, $\mathbb{P}^{2}$ is divided into two pieces $\{Z \neq 0\}=\complement V_{h}(Z)$ and $V_{h}(Z)$.
(2)

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \cup \mathbb{A}^{2} \cup \mathbb{A}^{2} .
$$

That means, $\mathbb{P}^{2}$ is covered by three "open sets" $\{Z \neq 0\},\{Y \neq$ $0\},\{X \neq 0\}$. Each of them is isomorphic to the plane (that is, the affine space of dimension 2).

Using the Lemma and the Proposition, we may easily compute the zeta function of a non-degenerate cubic equation

$$
a_{1} X^{2}+a_{2} X Y+a_{3} Y^{2}+b_{1} X+b_{2} Y+c
$$

in $\mathbb{A}^{2}$. (See the exercise below.)
Exercise 8.1. Let $p$ be a prime. Compute the congruent zeta functions of the following two equations (varieties) over $\mathbb{F}_{p}$.
(1) $V\left(X^{2}+Y^{2}-1\right) \subset \mathbb{A}^{2}$.
(2) $V\left(1+Y^{2}\right) \subset \mathbb{A}^{1}$.
(3) $V_{h}\left(X^{2}+Y^{2}-Z^{2}\right) \subset \mathbb{P}^{2}$.

Is there any relation between them? (Why?)

For the sake of completeness, we should have shown the following lemma.

LEMMA 8.4. Let $p$ be an odd prime. Let $\zeta$ be a primitive 8-th root of unity in $\overline{\mathbb{F}_{p}}$. That means, $\zeta$ is a root of $X^{4}+1 \in \mathbb{F}_{p}[X]$. Let us put $x=\zeta+\zeta^{-1}$. Then:
(1) $x^{2}=2$.
(2) $x^{p}-x=0$ if $p= \pm 1 \bmod 8$.
(3) $x^{p}+x=0$ if $p= \pm 3 \bmod 8$.
(4) $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$.

See the book of Serre (cited in No.01) for a proof.

