Congruent zeta functions. No.8

Yoshifumi Tsuchimoto

\fbox{plane conic}

DEFINITION 8.1   Let $ k$ be a field. A projective transformation of $ \P ^n=\P ^n(k)$ is a map

$\displaystyle f:\P ^n \to \P ^n
$

which is given by a non-degenerate matrix $ A \in \operatorname{GL}_{n+1}(k)$ as follows:

% latex2html id marker 771
$\displaystyle f([v])= [A.v] \qquad (v\in k^{n+1})
$

where [v] is the class of $ v\in k^{n+1}$ in $ \P ^n$.

We would like to prove the following proposition.

PROPOSITION 8.2   Let % latex2html id marker 782
$ F=F(X,Y,Z)\in \mathbb{F}_q[X,Y,Z]$ be a homogenious polynomial of degree $ 2$. We assume $ F$ is irreducible over % latex2html id marker 788
$ \overline{\mathbb{F}_q}$. Let us put $ C=V_h(F)$. Then:
  1. There exists at least one % latex2html id marker 792
$ \mathbb{F}_q$-valued point $ P$ in $ V_h(F)$.
  2. For any line $ L$ passing through $ P$ defined over % latex2html id marker 802
$ \mathbb{F}_q$, the intersection $ L\cap C$ consists of two % latex2html id marker 806
$ \mathbb{F}_q$-valued points $ P$ and $ Q_L$ except for a case where $ L$ contacts $ C$.
  3. There exists a projective change of coordinate $ f:\P ^2 \to \P ^2$ such that $ f (V_h(F))=V_h( XY-Z^2)$.
  4. The congruent zeta function of $ C$ is always equal to the congruent zeta function of $ \P ^1$.

LEMMA 8.3   We have the following picture of $ \P ^2$.
  1. $\displaystyle \P ^2=\mathbb{A}^2\coprod \P ^1.
$

    That means, $ \P ^2$ is divided into two pieces % latex2html id marker 835
$ \{Z\neq 0\}=\complement V_h(Z)$ and $ V_h(Z)$.
  2. $\displaystyle \P ^2=\mathbb{A}^2\cup \mathbb{A}^2 \cup \mathbb{A}^2.
$

    That means, $ \P ^2$ is covered by three “open sets” % latex2html id marker 843
$ \{Z\neq 0\}, \{Y\neq 0\}, \{X \neq 0\}$. Each of them is isomorphic to the plane (that is, the affine space of dimension 2).

Using the Lemma and the Proposition, we may easily compute the zeta function of a non-degenerate cubic equation

$\displaystyle a_1 X^2+a_2 XY+a_3 Y^2+b_1 X+b_2 Y+ c
$

in $ \mathbb{A}^2$. (See the exercise below.)

EXERCISE 8.1   Let $ p$ be a prime. Compute the congruent zeta functions of the following two equations (varieties) over $ \mathbb{F}_p$.
  1. $ V(X^2+Y^2-1)\subset \mathbb{A}^2$.
  2. $ V(1+Y^2)\subset \mathbb{A}^1$.
  3. $ V_h(X^2+Y^2-Z^2)\subset \P ^2$.
Is there any relation between them? (Why?)


For the sake of completeness, we should have shown the following lemma.

LEMMA 8.4   Let $ p$ be an odd prime. Let $ \zeta$ be a primitive $ 8$-th root of unity in $ \overline{\mathbb{F}_p}$. That means, $ \zeta$ is a root of $ X^4+1\in {\mathbb{F}}_p[X]$. Let us put $ x=\zeta+\zeta^{-1}$. Then:
  1. $ x^2=2$.
  2. $ x^p-x=0$ if $ p=\pm 1 \mod 8$.
  3. $ x^p+x=0$ if $ p=\pm 3 \mod 8$.
  4. $ {\left(\frac{2}{p}\right)}=(-1)^{(p^2-1)/8} $.

See the book of Serre (cited in No.01) for a proof.