環 $\mathbb{Q}[Y]/(Y^2+2Y-1)$ における Y のクラスを b と書き、体 $\mathbb{Q}(b)$ を考える。このとき、体の同型 $\mathbb{Q}(b)\cong\mathbb{Q}(\sqrt{2})$ があることを示しなさい。

 $\mathbb{Q}[Y]$ から $\mathbb{Q}(\sqrt{2})$ への写像 g を

$$g(p(Y)) = p(\sqrt{2} - 1) \quad (p(Y) \in \mathbb{Q}[Y])$$

で定める。 g は環の準同型であり、

$$g(Y^2 + 2Y - 1) = (\sqrt{2} - 1)^2 + 2(\sqrt{2} - 1) - 1 = 0$$

であるから、q は環準同型

$$\begin{array}{ccc} \bar{g}: \mathbb{Q}[Y]/(Y^2 + 2Y - 1) {\rightarrow} \mathbb{Q}(\sqrt{2}) \\ & & \cup & & \cup \\ p(b) & & \mapsto p(\sqrt{2} - 1) \end{array}$$

を誘導する。

 Y^2+2Y-1 は $\mathbb Q$ 上既約であるから、 $\mathbb Q[Y]/(Y^2+2Y-1)$ は体であり (:: ユークリッドの互除法)。ゆえに、 $\mathbb Q[b]=\mathbb Q(b)$ である。また、体からの環準同型は必ず単射であるから、 $\bar q$ は単射であることもわかる。

他方 $\operatorname{Image}(\bar{g})$ は $\mathbb Q$ と $\sqrt{2}$ を含み、なおかつ体であるから、 $\operatorname{Image}(\bar{g})=\mathbb Q(\sqrt{2})$ すなわち \bar{g} は全射でもある。ゆえに、 \bar{g} は求める同型を与える。

$$\mathbb{Q}[b] = \mathbb{Q}[Y]/(Y^2 + 2Y - 1)$$
 の世界

 $\mathbb{Q}[\sqrt{2}]$ の世界

 $\mathbb{Q}[b]$ は \mathbb{Q} 上の多項式を、差が Y^2+2Y-1 の倍数かどうかで分類した類の環。

 $\mathbb{Q}[\sqrt{2}]$ は \mathbb{Q} に $\sqrt{2}$ を付け加えてできた環

Y の類を b と書く。b は抽象的な元。

 $b_0 = \sqrt{2} - 1$ と書く。 b_0 は複素数の一つ。

$$b^2 + 2b - 1 = 0.$$

$$b_0^2 + 2b_0 - 1 = 0.$$

$$b^{5} = 29b - 41.$$

$$b^{3} - b + 1 = 2b^{2} + 8b - 3$$

$$(3b + 4)(5b + 6) = 8b + 31$$

$$\vdots$$

$$b_0^5 (= \sqrt{2} - 1)^5 = 29\sqrt{2} - 41 = 29b_0 - 41.$$

$$b_0^3 - b_0 + 1 = 2b_0^2 + 8b_0 - 3$$

$$(3b_0 + 4)(5b_0 + 6) = 8b_0 + 31$$

 $\mathbb{Q}[b]$ は実は体。

。 $\mathbb{Q}[\sqrt{2}]$ は実は体。

$$\frac{b^2 - b + 1}{b^2 + 7b - 5} = \frac{2}{31}b - \frac{15}{31}.$$

$$\frac{b_0^2 - b_0 + 1}{b_0^2 + 7b_0 - 5} = \frac{2}{31}b_0 - \frac{15}{31}.$$

ポイント

- ullet $\mathbb{Q}[b]$ の世界と $\mathbb{Q}[\sqrt{2}]$ の世界がそっくりにできている。
- b に対して $b_0 = \sqrt{2} 1$ が対応。
- p(b) に対しては $p(\sqrt{2}-1) = p(b_0)$ が対応。
- この対応は和、差、積、商を保つ。