
Zp, Qp, AND THE RING OF WITT VECTORS
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Playing with “digits in base n”

You should know that every positive integer may be written in dec-
imal notation:

(531)10 = 5× 102 + 3× 101 + 1× 100.

Similarly, given any integer (“base”) b ≥ 2, we may write a number as
a string of digits in base n. For example, we have

(531)10 = 1× 73 + 3× 72 + 5× 7 + 6× 1 = (1356)7.

Similarly, we have

(531)10 = (1356)7 = (1023)8 = 10000100112 = (213)16.

You may also probably know (repeating) decimal expresions of pos-
itive rational numbers.

(531.79)10 = 5× 102 + 3× 101 + 1× 100 + 7× 10−1 + 9× 10−2.

(531.79)10 = (1356.5̇346̇)7 = (1023.624̇3656050753412172702̇)8

Now let us reverse the order of digits. Namely, we employ a notation
like this1:

[97.135]10 = (531.79)10

[0.135]10 = (531)10

[123.456]10 = (654.321)10

. . .

Let us do some calculation with the above notation:

[0.1]10 + [0.9]10 = [0.01]10

[0.1]10 × [0.9]10 = [0.9]10

[0.01]10 × [0.09]10 = [0.009]10

You may recognize curious rules of computations. This curious notation
will lead you to a new world called “the world of addic numbers”.

Exercise 0.1. Compute

[0.12345]8 + [0.75432]8

with our curious notation. Then do the same computation in the usual
digital notation in base 10.

Lemma 0.1. For any prime number p, Z/pZ is a field. (We denote
it by Fp.)

Lemma 0.2. Let p be a prime number. Let R be a commutative ring
which contains Fp as a subring. Then we have the following facts.

1This is our private notation.



YOSHIFUMI TSUCHIMOTO

(1)
1 + 1 + · · ·+ 1
︸ ︷︷ ︸

p-times

= 0

holds in R.
(2) For any x, y ∈ R, we have

(x+ y)p = xp + yp

0.1. Finite fields. In this subsection we study some basic properties
on finite fields. A good account can be found in [2]. Also, there is a
brief explanation in [1] available on the net.

Lemma 0.3. Let F be a finite field (that means, a field which has
only a finite number of elements.) Then:

(1) There exists a prime number p such that p = 0 holds in F .
(2) F contains Fp as a subfield.
(3) q = #(F ) is a power of p.
(4) For any x ∈ F , we have xq − x = 0.
(5) The multiplicative group (Fq)

× is a cyclic group of order q − 1.

The next task is to construct such fields. An important tool is the
following lemma.

Lemma 0.4. For any field K and for any non zero polynomial f ∈
K[X ], there exists a field L containing L such that f is decomposed
into linear factors in L.

To prove it we use the following lemma.

Lemma 0.5. For any field K and for any irreducible polynomial f ∈
K[X ] of degree d > 0, we have the following.

(1) L = K[X ]/(f(X)) is a field.
(2) Let a be the class of X in L. Then a satisfies f(a) = 0.

Then we have the following lemma.

Lemma 0.6. Let p be a prime number. Let q = pr be a power of p.
Let L be a field extension of Fp such that Xq −X is decomposed into
polynomials of degree 1 in L. Then

(1)
L1 = {x ∈ L; xq = x}

is a subfield of L containing Fp.
(2) L1 has exactly q elements.

Finally we have the following lemma.

Lemma 0.7. Let p be a prime number. Let r be a positive integer.
Let q = pr. Then we have the following facts.

(1) There exists a field which has exactly q elements.
(2) There exists an irreducible polynomial f of degree r over Fp.
(3) Xq −X is divisible by the polynomial f as above.
(4) For any field K which has exactly q-elements, there exists an

element a ∈ K such that f(a) = 0.

In conclusion, we obtain:

Theorem 0.8. For any power q of p, there exists a field which has
exactly q elements. It is unique up to an isomorphism. (We denote it
by Fq.)
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The relation between various Fq’s is described in the following lemma.

Lemma 0.9. There exists a homomorphism from Fq to Fq′ if and
only if q′ is a power of q.
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