$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

YOSHIFUMI TSUCHIMOTO

Playing with "digits in base n "

You should know that every positive integer may be written in decimal notation:

$$
(531)_{10}=5 \times 10^{2}+3 \times 10^{1}+1 \times 10^{0} .
$$

Similarly, given any integer ("base") $b \geq 2$, we may write a number as a string of digits in base n. For example, we have

$$
(531)_{10}=1 \times 7^{3}+3 \times 7^{2}+5 \times 7+6 \times 1=(1356)_{7} .
$$

Similarly, we have

$$
(531)_{10}=(1356)_{7}=(1023)_{8}=1000010011_{2}=(213)_{16} .
$$

You may also probably know (repeating) decimal expresions of positive rational numbers.

$$
\begin{gathered}
(531.79)_{10}=5 \times 10^{2}+3 \times 10^{1}+1 \times 10^{0}+7 \times 10^{-1}+9 \times 10^{-2} . \\
(531.79)_{10}=(1356.534 \dot{6})_{7}=(1023.62 \dot{4} 365605075341217270 \dot{2})_{8}
\end{gathered}
$$

Now let us reverse the order of digits. Namely, we employ a notation like this ${ }^{1}$:

$$
\begin{aligned}
& {[97.135]_{10}=(531.79)_{10}} \\
& {[0.135]_{10}=(531)_{10}} \\
& {[123.456]_{10}=(654.321)_{10}}
\end{aligned}
$$

Let us do some calculation with the above notation:

$$
\begin{aligned}
& {[0.1]_{10}+[0.9]_{10}=[0.01]_{10}} \\
& {[0.1]_{10} \times[0.9]_{10}=[0.9]_{10}} \\
& {[0.01]_{10} \times[0.09]_{10}=[0.009]_{10}}
\end{aligned}
$$

You may recognize curious rules of computations. This curious notation will lead you to a new world called "the world of addic numbers".

Exercise 0.1. Compute

$$
[0.12345]_{8}+[0.75432]_{8}
$$

with our curious notation. Then do the same computation in the usual digital notation in base 10 .

Lemma 0.1. For any prime number $p, \mathbb{Z} / p \mathbb{Z}$ is a field. (We denote it by \mathbb{F}_{p}.)

Lemma 0.2 . Let p be a prime number. Let R be a commutative ring which contains \mathbb{F}_{p} as a subring. Then we have the following facts.

[^0](1)
$$
\underbrace{1+1+\cdots+1}_{p \text {-times }}=0
$$
holds in R.
(2) For any $x, y \in R$, we have
$$
(x+y)^{p}=x^{p}+y^{p}
$$
0.1. Finite fields. In this subsection we study some basic properties on finite fields. A good account can be found in [2]. Also, there is a brief explanation in [1] available on the net.

Lemma 0.3. Let F be a finite field (that means, a field which has only a finite number of elements.) Then:
(1) There exists a prime number p such that $p=0$ holds in F.
(2) F contains \mathbb{F}_{p} as a subfield.
(3) $q=\#(F)$ is a power of p.
(4) For any $x \in F$, we have $x^{q}-x=0$.
(5) The multiplicative group $\left(F_{q}\right)^{\times}$is a cyclic group of order $q-1$.

The next task is to construct such fields. An important tool is the following lemma.

Lemma 0.4. For any field K and for any non zero polynomial $f \in$ $K[X]$, there exists a field L containing L such that f is decomposed into linear factors in L.

To prove it we use the following lemma.
Lemma 0.5. For any field K and for any irreducible polynomial $f \in$ $K[X]$ of degree $d>0$, we have the following.
(1) $L=K[X] /(f(X))$ is a field.
(2) Let a be the class of X in L. Then a satisfies $f(a)=0$.

Then we have the following lemma.
Lemma 0.6. Let p be a prime number. Let $q=p^{r}$ be a power of p. Let L be a field extension of \mathbb{F}_{p} such that $X^{q}-X$ is decomposed into polynomials of degree 1 in L. Then

$$
\begin{equation*}
L_{1}=\left\{x \in L ; x^{q}=x\right\} \tag{1}
\end{equation*}
$$

is a subfield of L containing \mathbb{F}_{p}.
(2) L_{1} has exactly q elements.

Finally we have the following lemma.
Lemma 0.7. Let p be a prime number. Let r be a positive integer. Let $q=p^{r}$. Then we have the following facts.
(1) There exists a field which has exactly q elements.
(2) There exists an irreducible polynomial f of degree r over \mathbb{F}_{p}.
(3) $X^{q}-X$ is divisible by the polynomial f as above.
(4) For any field K which has exactly q-elements, there exists an element $a \in K$ such that $f(a)=0$.

In conclusion, we obtain:
Theorem 0.8. For any power q of p, there exists a field which has exactly q elements. It is unique up to an isomorphism. (We denote it by \mathbb{F}_{q}.)

The relation between various \mathbb{F}_{q} 's is described in the following lemma.
Lemma 0.9. There exists a homomorphism from \mathbb{F}_{q} to $\mathbb{F}_{q^{\prime}}$ if and only if q^{\prime} is a power of q.

References

[1] James S. Milne, Fields and galois theory (v4.61), 2020, Available at www.jmilne.org/math/, p. 138.
[2] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, 1970.

[^0]: ${ }^{1}$ This is our private notation.

