$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.05: ring of Witt vectors (1) Preparations
From here on, we make use of several notions of category theory. Readers who are unfamiliar with the subject is advised to see a book such as [1] for basic definitions and first properties.

Let p be a prime number. For any commutative ring k of characteristic $p \neq 0$, we want to construct a ring $W(k)$ of characteristic 0 in such a way that:
(1) $W\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$.
(2) $W(\bullet)$ is a functor. That means,
(a) For any ring homomorphism $\varphi: k_{1} \rightarrow k_{2}$ between rings of characterisic p, there is given a unique ring homomorphism $W(\varphi): W\left(k_{1}\right) \rightarrow W\left(k_{2}\right)$.
(b) $W(\bullet)$ should furthermore commutes with compositions of homomorphisms.
Recent days, it gets easier for us on the net to i find some good articles concerning the ring of Witt vectors. The treatment here borrows some ideas from them. See for example the "comments" section in https://www.encyclopediaofmath.org/index.php/Witt_vector
5.1. $\Lambda(A)$.

Definition 5.1. For any commutative ring A,
(1) we define

$$
\Lambda(A)=(1+T A[[T]]) \quad \text { (as a set) }
$$

For any $f \in(1+T A[[T]])$, we denote by $(f)_{W}$ the corresponding element in $\Lambda(A)$.
(2) For any $(f)_{W},(g)_{W} \in \Lambda(A)$, we define their sum by

$$
(f)_{W}+(g)_{W}=(f g)_{W}
$$

It is easy to see that $\Lambda(A)$ is an additive group. It also carries the " T-addic topology" so that $\Lambda(A)$ is a topological additive group.

The next task is to define multiplicative structure on $\Lambda(A)$. To that end, we do something somewhat different to others.

Definition 5.2. For any commutative ring A, we define $E(A)=$ $\operatorname{End}_{\text {additive }}(\Lambda(A))$. It has the usual structure of a ring. For any $a \in A$, we define its "Teichmüler" lift $[a]$ as

$$
(f(T))_{W} \mapsto(f(a T))_{W}
$$

The basic idea is to define $E_{0}(A)$ as the subalgebra of $E(A)$ topologically generated by all the Teichm" uller lifts $\{[a] ; a \in A\}$ and identify $E_{0}(A)$ with $\Lambda(A)$. To avoid some difficulties doing so, we first do this when A is a very good one:

Proposition 5.3. Assume $A=\Omega$, an algebraically closed field. Then:
(1) $\Lambda(A)$ is generated by $\left\{(1-a T)_{W} \mid a \in A\right\}$ as a topological additive group.
(2) The subring $E_{0}(A)$ of $E(A)$ generated by $\{[a] \mid a \in A\}$ as a topological ring is equal to $\{x \in E(A) ; x$ commutes with all Teichmüller lifts $\}$.
(3) $(1-T)_{W}$ is a generating separating vector of $\Lambda(A)$ over $E_{0}(A)$.

Thus we have a module isomorphism

$$
E_{0}(A) \ni \varphi \rightarrow \varphi\left((1-T)_{W}\right) \in \Lambda(A)
$$

(Note that This isomorphism sends $[a]$ to $(1-a T)_{W}$.
We may thus identify $E_{0}(A)$ and $\Lambda(A)$ via this isomorphism and employ a ring structure on $\Lambda(A)$.

Here after, for any algebraically closed field A, we employ the ring structure of $\Lambda(A)$ defined as the above proposition. In this language we have:

$$
(1-a T)_{W} \cdot(1-b T)_{W}=(1-a b T)_{W} \quad(a, b \in A)
$$

More generally, for any $f(T) \in 1+T A[[T]]$, we have a formula for multiplication by degree-1-object $(1-a T)_{W}$:

$$
(1-a T)_{W} \cdot(f(T))_{W}=\left(f(a T)_{W}\right) \quad(a \in A)
$$

We may extend this formula to any polynomial $g(T) \in 1+T A[T]$ with constant term $=1$. Indeed, we factorize g as $g(T)=\prod_{j=1}^{k}\left(1-\alpha_{j} T\right)$ and

$$
(g(T))_{W} \cdot(f(T))_{W}=\prod_{j} f\left(\alpha_{j} T\right)
$$

Exercise 5.1. Compute $\left(1+a T+b T^{2}\right)_{W}\left(1+p T+q T^{2}\right)_{W}$. Notice that the result of the computation only needs polynomials with coefficents in $\mathbb{Z}[a, b, p, q]$ rather than some extension of the ring.

References

[1] S. S. Mac Lane, Categories for the working mathematicians, Springer Verlag, 1971.

