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No.06: ring of Witt vectors (2)

6.1. Λ(A) for arbitrary commutative ring A. In the previous lec-
ture we defined the ring structure on Λ(A) for A = Ω, a field of char-
acteristic 0. Now we want to define the structure for arbitrary commu-
tative ring A. Note that addition is already known:

(f)W + (g)W = (fg)W

We would like to know the product (f)W (g)W . Before doing that, we
consider “universal” power serieses:

a(T ) = 1 + a1T + a2T
2 + a3T

3 + . . . ,

b(T ) = 1 + b1T + b2T
2 + b3T

3 + . . . ,

with a1, a2, . . . , b1, b2, b3, . . . be all independent variables. We need a
fairly large field Ω, namely,

Ω = Q(a1, a2, . . . , b1, b2, . . . ),

the algebraic closure of an infinite trancendent extension of Q. We find:

(a(T ))W (b(T ))W = (ma,b(T ))W

where

ma,b(T ) = 1 +ma,b;1T +ma,b;2T
2 +ma,b;3T

3 + . . .

with ma,b;k ∈ Ω.
We also see:

• For fixed a, ma,b,k only depend on b1, b2, b3, . . . , bk. (In other

words, it is an element of Q(a1, . . . , ak, b1, b2, . . . , bk).
• By using a Galois-theoretic arguments (or by using arguments
on symmetric polynomials,) we see that ma,b,k actually lie in
Q(a1, a2, . . . , ak, b1, b2, . . . , bk).

• ma,b,k is integral over the polynomial ring Z[a1, a2, . . . , ak, b1, b2, . . . , bk].
It is thus itself belongs to the ring Z[a1, a2, . . . , ak, b1, b2, . . . , bk].

• The fact that Λ(Ω) obeys each of the axioms of ring, such as

((a)W (b)W )(c)W = (a)W ((b)W (c)W )

(associativity), gives a set of polynomial identities in a, b, c,mab;k, mbc,k.
Such identities in term guarantees that for any ring A, Λ(A)
satisfy such axiom.

Proposition 6.1. For any commutative ring A, Λ(A) carries the

structure of a ring.

6.2. Yet another way to deal with the multiplication of Λ(A).

Proposition 6.2. Λ(A) is generated by {(1− cT n)W ; c ∈ A, n ∈ N}
as a topological additve group.

Proof. Induction. (We leave it as Exercise 6.1) �
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Proposition 6.3. Let a, b ∈ A. Assume n,m ∈ Z>0 such that

gcd(n,m) = d, n = n1d,m = n2d. Then:

(1− aT n)W (1− bTm)W = (1− am1bn1T n1m1d)d

(Exercise 6.2)* Note: The answer can be somewhat different than
that in the statement. Sorry about that.

Corollary 6.4. The multiplication of Λ(A) surely remain in Λ(A)
as it should be.
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