$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.06: ring of Witt vectors (2)
6.1. $\Lambda(A)$ for arbitrary commutative ring A. In the previous lecture we defined the ring structure on $\Lambda(A)$ for $A=\Omega$, a field of characteristic 0 . Now we want to define the structure for arbitrary commutative ring A. Note that addition is already known:

$$
(f)_{W}+(g)_{W}=(f g)_{W}
$$

We would like to know the product $(f)_{W}(g)_{W}$. Before doing that, we consider "universal" power serieses:

$$
\begin{aligned}
& a(T)=1+a_{1} T+a_{2} T^{2}+a_{3} T^{3}+\ldots, \\
& b(T)=1+b_{1} T+b_{2} T^{2}+b_{3} T^{3}+\ldots
\end{aligned}
$$

with $a_{1}, a_{2}, \ldots, b_{1}, b_{2}, b_{3}, \ldots$ be all independent variables. We need a fairly large field Ω, namely,

$$
\Omega=\overline{\mathbb{Q}\left(a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots\right)},
$$

the algebraic closure of an infinite trancendent extension of \mathbb{Q}. We find:

$$
(a(T))_{W}(b(T))_{W}=\left(m_{a, b}(T)\right) W
$$

where

$$
m_{a, b}(T)=1+m_{a, b ; 1} T+m_{a, b ; 2} T^{2}+m_{a, b ; 3} T^{3}+\ldots
$$

with $m_{a, b ; k} \in \Omega$.
We also see:

- For fixed $a, m_{a, b, k}$ only depend on $b_{1}, b_{2}, b_{3}, \ldots, b_{k}$. (In other words, it is an element of $\overline{\mathbb{Q}\left(a_{1}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right)}$.
- By using a Galois-theoretic arguments (or by using arguments on symmetric polynomials,) we see that $m_{a, b, k}$ actually lie in $\mathbb{Q}\left(a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right)$.
- $m_{a, b, k}$ is integral over the polynomial ring $\mathbb{Z}\left[a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right]$. It is thus itself belongs to the ring $\mathbb{Z}\left[a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right]$.
- The fact that $\Lambda(\Omega)$ obeys each of the axioms of ring, such as

$$
\left((a)_{W}(b)_{W}\right)(c)_{W}=(a)_{W}\left((b)_{W}(c)_{W}\right)
$$

(associativity), gives a set of polynomial identities in $a, b, c, m_{a b ; k}, m_{b c, k}$. Such identities in term guarantees that for any ring $A, \Lambda(A)$ satisfy such axiom.

Proposition 6.1. For any commutative ring $A, \Lambda(A)$ carries the structure of a ring.

6.2. Yet another way to deal with the multiplication of $\Lambda(A)$.

Proposition 6.2. $\Lambda(A)$ is generated by $\left\{\left(1-c T^{n}\right)_{W} ; c \in A, n \in \mathbb{N}\right\}$ as a topological additve group.

Proof. Induction. (We leave it as Exercise 6.1)

Proposition 6.3. Let $a, b \in A$. Assume n, $m \in \mathbb{Z}_{>0}$ such that $\operatorname{gcd}(n, m)=d, n=n_{1} d, m=n_{2} d$. Then:

$$
\left(1-a T^{n}\right)_{W}\left(1-b T^{m}\right)_{W}=\left(1-a^{m_{1}} b^{n_{1}} T^{n_{1} m_{1} d}\right)^{d}
$$

(Exercise 6.2)* Note: The answer can be somewhat different than that in the statement. Sorry about that.

Corollary 6.4. The multiplication of $\Lambda(A)$ surely remain in $\Lambda(A)$ as it should be.

