$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.8:

The ring of Witt vectors when A is a ring of characteristic $p \neq 0$. Recall $\Lambda(A)=1+A[[T]] T$ for a formal variable T. To clearly describe the variable, we will denote it as $\Lambda_{(T)}(A)$. It is additively topologically generated by $\left\{[a]_{T}=1-a T ; a \in A\right\}$. the set of all Teichmüller lift of the elements $a \in A$.
8.1. $\Lambda(A)$ as a λ-ring. The treatment in this subsection essentially follows https://encyclopediaofmath.org/wiki/Lambda-ring. (But a caution is advised: some signatures are different from the article cited above.)

Definition 8.1. $\left(A, \lambda_{T}: A \rightarrow \Lambda_{T}(A)\right)$ is called a pre- λ-ring if

- A is a commutative ring.
- $\lambda_{T}: A \rightarrow \Lambda_{(T)}(A)$ is an additive map.

Let us write $\lambda_{T}(f)$ for $f \in A$ as $\lambda_{T}(f)=\left(\sum_{j} \lambda^{j}(f) T^{j}\right)_{W}$. Then the additivity of λ_{T} can be expressed as identities of $\left\{\lambda^{j}\right\}$ of the following form:

- $\lambda^{0}(f)=1 \quad(\forall f \in A)$.
- $\lambda^{1}(f)=f \quad(\forall f \in A)$.
- $\left.\lambda^{n}(f+g)=\sum_{i+j=n} \lambda^{(} f\right) \lambda^{j}(g) \quad \forall f, g \in A$.
(Note that λ^{j} is not a " j-th power of λ " in any sence.)
Definition 8.2. Let $R=\left(R, \lambda_{(T)}^{R}: R \rightarrow \Lambda_{T}(R)\right), S=\left(S, \lambda_{(T)}^{S}\right.$: $\left.S \rightarrow \Lambda_{T}(S)\right)$ be pre-lambda rings. Then a λ-ring homomorphism from R to S is a ring homomorphism $\varphi: R \rightarrow$ such that the following diagram commutes.

The map $\Lambda_{(T)}(\varphi)$ which appears above is defined as follows:

$$
\Lambda_{(T)}(\varphi)\left(\left(\sum a_{j} T^{j}\right)_{W}\right)=\left(\sum \varphi\left(a_{j}\right) T^{j}\right)_{W} \quad\left(\left\{a_{j}\right\}_{j} \subset A\right)
$$

(Yes, we regard $\Lambda_{(T)}(\bullet)$ as a functor.)
We also note, as a consequence of the definition, that we have the following formula for Teichmüller lifts:

$$
\Lambda_{(T)}(\varphi)([a])=[\varphi(a)] \quad(\forall a \in A)
$$

8.2. $\Lambda(A)$ as a pre- λ-ring. There exists an additive map $\lambda_{S}: \Lambda_{(T)}(A) \rightarrow$ $\Lambda_{(S)} \Lambda_{(T)}(A)$ defined by

$$
\lambda_{S}\left([a]_{T}\right)=\left[[a]_{T}\right]_{S} \quad(\forall a \in A)
$$

Proof. For $\alpha(T)=\prod_{i}\left(1-\xi_{i} T\right)$, we have

$$
\begin{aligned}
& \sum_{i}\left[\left[\xi_{i}\right]_{T}\right]_{U} \\
= & \left.\prod_{i}\left(1-\left[\xi_{i}\right]_{T} U\right)\right)_{W} \\
= & \left(\sum_{n} \sum_{i_{1}<i_{2}<\ldots i_{n}}\left[\xi_{i_{1}} \ldots \xi_{i_{n}}\right]_{T}(-U)^{n}\right)_{W} \\
= & \left(\sum_{n} \sum_{i_{1}<i_{2}<\ldots i_{n}}\left(1-\xi_{i_{1}} \ldots \xi_{i_{n}} T\right)_{W}(-U)^{n}\right)_{W} \\
= & \left(\sum_{n}\left(\prod_{i_{1}<i_{2}<\ldots i_{n}}\left(1-\xi_{i_{1}} \ldots \xi_{i_{n}} T\right)\right)_{W}(-U)^{n}\right)_{W} \\
= & \left(\sum_{n}\left(\sum_{j=0}^{\infty} L_{j, n}(a) T^{j}\right)_{W}(-U)^{n}\right)_{W}
\end{aligned}
$$

So the required map is given by

$$
\left(\sum_{j} a_{j}(T)\right)_{W} \mapsto\left(\sum_{n} \sum_{j=0}^{\infty}\left(L_{j, n}(a) T^{j}\right)_{W}(-U)^{n}\right)_{W}
$$

8.3. λ-ring.

Definition 8.3. A pre- λ-ring $A, \lambda_{T}: A \rightarrow \Lambda_{(T)}(A)$ is a λ-ring if $\lambda_{T}: A \rightarrow \Lambda_{(T)}(A)$ is a λ-homomorphism.

Proposition 8.4. For any commutative ring $A,\left(\Lambda(A), \lambda_{U}: \Lambda_{(T)}(A) \rightarrow\right.$ $\Lambda_{(U)} \Lambda_{(T)}(A)$ is a λ-ring.

Proof. To avoid some confusion, we use lower case letters for indeterminate variables. Moreover, to distinquish all the lambda's around here, we denote by $\grave{\lambda}$ the lambda operation on $\Lambda(A)$:

$$
\stackrel{\circ}{\lambda}_{(t, u)}: \Lambda_{(t)} A \ni[a]_{t} \mapsto\left[[a]_{t}\right]_{u} \in \Lambda_{(u)} \Lambda_{(t)} A
$$

where $[a]_{t}$ is the Teichmüller lift of $a \in A$ in $\Lambda_{(t)} A$. We need to verify the commutativity of the following diagram:

$$
\begin{aligned}
& \Lambda_{(u)}(A) \xrightarrow{\left.{\stackrel{\circ}{\lambda_{(t, u)}}} \Lambda_{(t)}\left(\Lambda_{(u)} A\right), ~()^{2}\right)} \\
& \stackrel{\circ}{\lambda}_{(v, u)} \downarrow \mid \Lambda_{(t)} \stackrel{\circ}{\lambda}(v, u) \\
& \Lambda_{(v)} \Lambda_{(u)} A \underset{\dot{\lambda}_{(t, v)}}{\longrightarrow} \Lambda_{(t)}\left(\Lambda_{(v)} \Lambda_{(u)} A\right)
\end{aligned}
$$

which can be verified by a diagram chasing for generators $[a]_{u}(a \in A)$:

$$
\begin{aligned}
& {[a]_{u} \xrightarrow{\stackrel{\circ}{\lambda}(t, u)\left[[a]_{u}\right]_{t}, ~}} \\
& \stackrel{\circ}{\lambda}(v, u)^{\downarrow} \quad \Lambda_{(t)} \AA_{(v, u))} \\
& {\left[[a]_{u}\right]_{v} \xrightarrow[\lambda_{(t, v)}]{ }\left[\left[[a]_{u}\right]_{v}\right]_{t}}
\end{aligned}
$$

8.4. Idempotents. We are going to decompose the ring of Witt vectors $\mathcal{W}_{1}(A)$. Before doing that, we review facts on idempotents. Recall that an element x of a ring is said to be idempotent if $x^{2}=x$.

Theorem 8.5. Let R be a commutative ring. Let $e \in R$ be an idempotent. Then:
(1) $\tilde{e}=1-e$ is also an idempotent. (We call it the complementary idempotent of e.)
(2) e, \tilde{e} satisfies the following relations:

$$
e^{2}=1, \quad \tilde{e}^{2}=1, \quad e \tilde{e}=0
$$

(3) R admits an direct product decomposition:

$$
R=(R e) \times(R \tilde{e})
$$

Definition 8.6. For any ring R, we define a partial order on the idempotents of if as follows:

$$
e \succeq f \Longleftrightarrow e f=f
$$

It is easy to verify that the relation \succeq is indeed a partial order. We note also that, having defined the order on the idempotents, for any given family $\left\{e_{\lambda}\right\}$ of idempotents we may refer to its "supremum" $V e_{\lambda}$ and its"infimum" $\wedge e_{\lambda}$. (We are not saying that they always exist: they may or may not exist.) When the ring R is topologized, then we may also discuss them by using limits,

8.5. Playing with idempotents in the ring of Witt vectors.

Definition 8.7. Let A be a commutative ring. For any $a \in A$, we denote by $[a]$ the element of $\mathcal{W}_{1}(A)$ defined as follows:

$$
[a]=(1-a T)_{W}
$$

We call $[a]$ the "Teichmüller lift" of a.
Lemma 8.8. Let A be a commutative ring. Then:
(1) $\mathcal{W}_{1}(A)$ is a commutative ring with the zero element $[0]$ and the unity [1].
(2) For any $a, b \in A$, we have

$$
[a] \cdot[b]=[a b]
$$

Proposition 8.9. Let A be a commutative ring. If n is a positive integer which is invertible in A, then n is invertible in $\mathcal{W}_{1}(A)$. To be more precise, we have

$$
\frac{1}{n} \cdot[1]=\left((1-T)^{\frac{1}{n}}\right)_{W}=\left(\left(1+\sum_{j=1}^{\infty}\binom{\frac{1}{n}}{j}(-T)^{j}\right)_{W} .\right.
$$

Proof. It is easy to find out, by using iterative approximation, an element x of $A[[T]]$ such that

$$
(1+x)^{n}=(1-T) .
$$

It also follows from the next lemma.
LEMMA 8.10. Let n be a positive integer. Let k be a non negative integer. Then we have always

$$
\binom{\frac{1}{n}}{k} \in \mathbb{Z}\left[\frac{1}{n}\right] .
$$

Proof.

$$
\begin{aligned}
\binom{\frac{1}{n}}{k} & =\frac{\frac{1}{n}\left(\frac{1}{n}-1\right) \cdots\left(\frac{1}{n}-(k-1)\right)}{k!} \\
& =\frac{1}{n^{k}} \frac{(1(1-n)(1-2 n) \ldots(1-(k-1) n)}{k!}
\end{aligned}
$$

So the result follows from the next sublemma.
Sublemma 8.11. Let n be a positive integer. Let k be a non negative integer. Let $\left\{a_{j}\right\}_{j=1}^{k} \subset \mathbb{Z}$ be an arithmetic progression of common difference n. Then:
(1) For any positive integer m which is relatively prime to n, we have

$$
\#\left\{j ; m \mid a_{j}\right\} \geq\left\lfloor\frac{k}{m}\right\rfloor
$$

(2) For any prime p which does not divide n, let us define

$$
c_{k, p}=\sum_{i=1}^{\infty}\left\lfloor\frac{k}{p^{i}}\right\rfloor
$$

(which is evidently a finite sum in practice.) Then

$$
\begin{gathered}
p^{c_{k, p}} \mid \prod_{j=1}^{k} a_{j} \\
p^{c_{k, p}} \mid k!, \quad p^{c_{k, p}+1} \nmid k! \\
\frac{\prod_{j=1}^{k} a_{j}}{k!} \in \mathbb{Z}_{(p)}
\end{gathered}
$$

Proof. (1) Let us put $t=\left\lfloor\frac{k}{m}\right\rfloor$. Then we divide the set of first $k t$-terms of the sequence $\left\{a_{j}\right\}$ into disjoint sets in the following way.

$$
\begin{aligned}
S_{0} & =\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \\
S_{1} & =\left\{a_{m+1}, a_{m+2}, a_{m+m}\right\} \\
S_{2} & =\left\{a_{2 m+1}, a_{2 m+2}, a_{2 m+m}\right\} \\
\ldots & \\
S_{t-1} & =\left\{a_{(t-1) m+1}, a_{(t-1) m+2}, \ldots, a_{(t-1) m+m}\right\}
\end{aligned}
$$

Since m is coprime to n, we see that each of the S_{u} gives a complete representative of $\mathbb{Z} / n \mathbb{Z}$.
(2): Apply (1) to the cases where $m=p, p^{2}, p^{3}, \ldots$ and count the powers of p which appear in $\prod a_{j}$.
(3): Easy. (4) is a direct consequence of (2),(3).

Definition 8.12 . For any positive integer n which is invertible in a commutative ring A, we define an element e_{n} as follows:

$$
e_{n}=\frac{1}{n} \cdot\left(1-T^{n}\right)_{W}
$$

Lemma 8.13. Let A be a commutative ring. Then for any positive integer n which is invertible in A, we have:
(1) e_{n} is an idempotent.

$$
\begin{equation*}
e_{n}=\left(1-\frac{1}{n} T^{n}+(\text { higher order terms })\right)_{W} \tag{2}
\end{equation*}
$$

(3) If $n \mid m$, with m invertible in A, then $e_{n} \geq e_{m}$ in the order of idempotents.

Proof. if $n \mid m$, then we have

$$
e_{n} \cdot e_{m}=e_{m} .
$$

It should be important to note that the range of the projection e_{n} is easy to describe.

Proposition 8.14. Let n be an integer invertible in $A . e_{n} \cdot \mathcal{W}_{1}(A)=$ $\left\{(f)_{W} \mid f \in 1+T^{n} A\left[\left[T^{n}\right]\right]\right\}$

Proof. Easy. Compare with Lemma 8.24 below.
8.6. The ring of p-adic Witt vectors (when the characteristic of the base ring A is p). Before proceeding further, let me illustrate the idea. Proposition 8.9 tells us an existence of a set $\left\{e_{n} ; n \in \mathbb{Z}_{>0}, p \nmid n\right\}$ of idempotents in $\mathcal{W}_{1}(A)$ such that its order structure is somewhat like the one found on the set $\left\{n \mathbb{N} ; n \in \mathbb{Z}_{>0}, p \nmid n\right\}$. Knowing that the idempotents correspond to decompositions of $\mathcal{W}_{1}(A)$, we may ask:

Problem 8.15. What is the partition of $\mathbb{Z}_{>0}$ generated by the subsets $\left\{n \mathbb{N} ; n \in \mathbb{Z}_{>0}\right\}$?

To answer this problem, it would probably be better to find out, for given positive number n which is coprime to p, what the set

$$
S_{n ; p}=n \mathbb{N} \backslash\left(\bigcup_{\substack{n|m \\ n<m \\ p| m}} m \mathbb{N}\right)
$$

should be. The answer is given by a fact which we know very well: every positive integer may uniquely be written as

$$
p^{s} k \quad\left(s \in \mathbb{Z}_{\geq 0}, \quad k \in \mathbb{Z}_{>0}, \quad \operatorname{gcd}(p, k)=1\right)
$$

Knowing that, we see that the set $S_{n ; p}$ as above is equal to

$$
\left\{p^{s} n ; s \in \mathbb{Z}_{\geq 0}\right\}
$$

The answer to the problem is now given as follows:

$$
\mathbb{Z}_{>0}=\coprod_{p \nmid n}\left\{p^{s} n ; s \in \mathbb{Z}_{\geq 0}\right\} .
$$

The same story applies to the ring $\mathcal{W}_{1}(A)$ of universal Witt vectors for a ring A of characteristic p. We should have a direct product expansion

$$
\mathcal{W}_{1}(A)=\prod_{p \nmid n} e_{n ; p} \mathcal{W}_{1}(A)
$$

where the idempotent $e_{n ; p}$ is defined by

$$
e_{n ; p}=e_{n}-\bigvee_{\substack{n \mid m \\ n<m \\ p \nmid m}} e_{m}
$$

Of course we need to consider infimum of infinite idempotents. We leave it to an exercise:

Exercise 8.1. Show that the supremum

$$
\bigvee_{\substack{n \mid m \\ n<m \\ p \nmid m}} e_{m}=e_{n}-\prod_{\substack{n \mid m \\ n<m \\ p \nmid m}}\left(e_{n}-e_{m}\right)
$$

exists. In other words, show that the right hand side converges.
Proposition 8.16. Let p be a prime. Let A be an integral domain of characteristic p. Let us define an idempotent f of $\mathcal{W}_{1}(A)$ as follows.

$$
f=\bigvee_{\substack{n>1 \\ p \nmid n}} e_{n}\left(=[1]-\prod_{\substack{p \nmid n \\ n>1}}\left([1]-e_{n}\right)\right)
$$

Then f defines a direct product decomposition

$$
\mathcal{W}_{1}(A) \cong\left(f \cdot \mathcal{W}_{1}(A)\right) \times\left(([1]-f) \cdot \mathcal{W}_{1}(A)\right)
$$

We call the factor algebra $([1]-f) \cdot \mathcal{W}_{1}(A)$ the ring $\mathcal{W}^{(p)}(A)$ of p-adic Witt vectors.

The following proposition tells us the importance of the ring of p-adic Witt vectors.

Proposition 8.17. Let p be a prime. Let A be a commutative ring of characteristic p. For each positive integer k which is not divisible by p, let us define an idempotent f_{k} of $\mathcal{W}_{1}(A)$ as follows.

$$
f_{k}=\bigvee_{\substack{p \nmid n \\ n>1}} e_{k n}\left(=e_{k}-\prod_{\substack{p \nmid n \\ n>1}}\left(e_{k}-e_{k n}\right)\right)
$$

Then f_{k} defines a direct product decomposition

$$
e_{k} \mathcal{W}_{1}(A) \cong\left(f_{k} \cdot \mathcal{W}_{1}(A)\right) \times\left(\left(e_{k}-f_{k}\right) \cdot \mathcal{W}_{1}(A)\right)
$$

Furthermore, the factor algebra $\left(e_{k}-f_{k}\right) \cdot \mathcal{W}_{1}(A)$ is isomorphic to the ring $\mathcal{W}^{(p)}(A)$ of p-adic Witt vectors. Thus we have a direct product decomposition

$$
\mathcal{W}_{1}(A) \cong \mathcal{W}^{(p)}(A)^{\mathbb{N}}
$$

8.7. The ring of p-adic Witt vectors for general A. In the preceding subsection we have described how the ring $\mathcal{W}_{1}(A)$ of universal Witt vectors decomposes into a countable direct sum of the ring of p-adic Witt vectors. In this subsection we show that the ring $W^{(p)}(A)$ can be defined for any ring A (that means, without the assumption of A being characteristic p).

We need some tools.
Definition 8.18. Let A be any commutative ring. Let n be a positive integer. Let us define additive operators V_{n}, F_{n} on $\mathcal{W}_{1}(A)$ by the following formula.

$$
\begin{gathered}
V_{n}\left((f(T))_{W}\right)=\left(f\left(T^{n}\right)\right)_{W} \\
F_{n}\left((f(T))_{W}\right)=\left(\prod_{\zeta \in \mu_{n}} f\left(\zeta T^{1 / n}\right)\right)_{W}
\end{gathered}
$$

(The latter definition is a formal one. It certainly makes sense when A is an algebra over \mathbb{C}. Then the definition descends to a formal law defined over \mathbb{Z} so that F_{n} is defined for any ring A. In other words,
F_{n} is actually defined to be the unique continuous additive map which satisfies

$$
F_{n}\left(\left(1-a T^{l}\right)\right)=\left(\left(1-a^{m / l} T^{m / n}\right)^{l n / m}\right)_{W} \quad(m=\operatorname{lcm}(n, l))
$$

)
Lemma 8.19. Let p be a prime number. Let A be a commutative ring of characteristic p. Then:
(1) We have

$$
F_{p}(f(T))=\left(f\left(T^{1 / p}\right)\right)^{p} \quad\left(\forall f \in \mathcal{W}_{1}(A)\right)
$$

in particular, F_{p} is an algebra endomorphism of $\mathcal{W}_{1}(A)$ in this case.
(2)

$$
V_{p}\left(F_{p}\left((f)_{W}\right)=F_{p}\left(V_{p}\left((f)_{W}\right)\right)=\left(f(T)^{p}\right)_{W}=p \cdot(f(T))_{W}\right.
$$

Definition 8.20 . Let A be any commutative ring. Let p be a prime number. We denote by

$$
\mathcal{W}^{(p)}(A)=A^{\mathbb{N}} .
$$

and define

$$
\pi_{p}: \mathcal{W}_{1}(A) \rightarrow \mathcal{W}^{(p)}(A)
$$

by

$$
\pi_{p}\left(\sum_{j=1}^{\infty}\left(1-x_{j} T^{j}\right)\right)=\left(x_{1}, x_{p}, x_{p^{2}}, x_{p^{3}} \ldots\right) .
$$

Lemma 8.21. Let us define polynomials $\alpha_{j}(X, Y) \in \mathbb{Z}[X, Y]$ by the following relation.

$$
(1-x T)(1-y T)=\prod_{j=1}^{\infty}\left(1-\alpha_{j}(x, y) T^{j}\right)
$$

Then we have the following rule for "carry operation":

$$
\left(1-x T^{n}\right)_{W}+\left(1-y T^{n}\right)_{W}=\sum_{j=1}^{\infty}\left(1-\alpha_{j}(x, y) T^{j n}\right)
$$

Proposition 8.22. There exist unique binary operators + and \cdot on $\mathcal{W}^{(p)}(A)$ such that the following diagrams commute.

Proof. Using the rule as in the previous lemma, we see that addition descends to an addition of $\mathcal{W}^{(p)}(A)$. It is easier to see that the multiplication also descends.

Definition 8.23. For any commutative ring A, elements of $W^{(p)}(A)$ are called p-adic Witt vectors over A. The ring $\left(W^{(p)}(A),+, \cdot\right)$ is called the ring of p-adic Witt vectors over A.

Lemma 8.24. Let p be a prime number. Let A be a ring of characteristic p. Then for any n which is not divisible by p, the map

$$
\frac{1}{n} \cdot V_{n}: \mathcal{W}_{1}(A) \rightarrow \mathcal{W}_{1}(A)
$$

is a "non-unital ring homomorphism". Its image is equal to the range of the idempotent e_{n}. That means,

$$
\operatorname{Image}\left(\frac{1}{n} \cdot V_{n}\right)=e_{n} \cdot \mathcal{W}_{1}(A)=\left\{\sum_{j}\left(1-y_{j} T^{n j}\right)_{W} ; y_{j} \in A\right\}
$$

Proof. V_{n} is already shown to be additive. The following calculation shows that $\frac{1}{n} \cdot V_{n}$ preserves the multiplication: for any positive integer a, b with lcm m and for any element $x, y \in A$, we have:

$$
\begin{aligned}
& \left(\frac{1}{n} \cdot V_{n}\left(\left(1-x T^{a}\right)_{W}\right)\right) \cdot\left(\frac{1}{n} \cdot V_{n}\left(\left(1-y T^{b}\right)_{W}\right)\right) \\
= & \left(\frac{1}{n} \cdot\left(1-x T^{a n}\right)_{W}\right) \cdot\left(\frac{1}{n} \cdot\left(1-y T^{b n}\right)_{W}\right) \\
= & \frac{1}{n^{2}} \cdot \frac{a n \cdot b n}{n m}\left(\left(1-x^{m / a} y^{m / b} T^{n m}\right)^{d}\right)_{W} \\
= & \frac{1}{n} \cdot V_{n}\left(\left(\left(1-x T^{a}\right)_{W} \cdot\left(1-y T^{b}\right)_{W}\right)\right.
\end{aligned}
$$

We then notice that the image of the unit element [1] of the Witt algebra is equal to $\frac{1}{n} V_{n}([1])=e_{n}$ and that $\frac{1}{n} V\left(e_{n} f\right)=e_{n} f$ for any $f \in \mathcal{W}_{1}(A)$. The rest is then obvious.

In preparing from No. 7 to No. 10 of this lecture, the following reference (especially its appendix) has been useful:
http://www.math.upenn.edu/~chai/course_notes/cartier_12_2004.pdf

