
Zp, Qp, AND THE RING OF WITT VECTORS

No.8:
The ring of Witt vectors when A is a ring of characteristic p 6= 0. Re-

call Λ(A) = 1 + A[[T ]]T for a formal variable T . To clearly describe
the variable, we will denote it as Λ(T )(A). It is additively topologically
generated by {[a]T = 1 − aT ; a ∈ A}. the set of all Teichmüller lift of
the elements a ∈ A.

8.1. Λ(A) as a λ-ring. The treatment in this subsection essentially fol-
lows https://encyclopediaofmath.org/wiki/Lambda-ring. (But a
caution is advised: some signatures are different from the article cited
above.)

Definition 8.1. (A, λT : A → ΛT (A)) is called a pre-λ-ring if

• A is a commutative ring.
• λT :A → Λ(T )(A) is an additive map.

Let us write λT (f) for f ∈ A as λT (f) = (
∑

j λ
j(f)T j)W . Then the

additivity of λT can be expressed as identities of {λj} of the following
form:

• λ0(f) = 1 (∀f ∈ A) .
• λ1(f) = f (∀f ∈ A).
• λn(f + g) =

∑

i+j=n λ
(f)λj(g) ∀f, g ∈ A.

(Note that λj is not a “j-th power of λ” in any sence.)

Definition 8.2. Let R = (R, λR
(T ) : R → ΛT (R)), S = (S, λS

(T ) :

S → ΛT (S)) be pre-lambda rings. Then a λ-ring homomorphism from
R to S is a ring homomorphism ϕ : R → such that the following
diagram commutes.

R
λR
(T )
//

ϕ

��

Λ(T )(R)

Λ(T )(ϕ)

��

S
λS
(T )

// Λ(T )(S)

The map Λ(T )(ϕ) which appears above is defined as follows:

Λ(T )(ϕ)((
∑

ajT
j)W ) = (

∑

ϕ(aj)T
j)W ({aj}j ⊂ A)

(Yes, we regard Λ(T )(•) as a functor.)

We also note, as a consequence of the definition, that we have the
following formula for Teichmüller lifts:

Λ(T )(ϕ)([a]) = [ϕ(a)] (∀a ∈ A)

8.2. Λ(A) as a pre-λ-ring. There exists an additive map λS : Λ(T )(A) →
Λ(S)Λ(T )(A) defined by

λS([a]T ) = [[a]T ]S (∀a ∈ A)

https://encyclopediaofmath.org/wiki/Lambda-ring
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Proof. For α(T ) =
∏

i(1− ξiT ), we have
∑

i

[[ξi]T ]U

=
∏

i

(1− [ξi]TU))W

=(
∑

n

∑

i1<i2<...in

[ξi1 . . . ξin]T (−U)n)W

=(
∑

n

∑

i1<i2<...in

(1− ξi1 . . . ξinT )W (−U)n)W

=(
∑

n

(
∏

i1<i2<...in

(1− ξi1 . . . ξinT ))W (−U)n)W

=(
∑

n

(
∞
∑

j=0

Lj,n(a)T
j)W (−U)n)W

So the required map is given by

(
∑

j

aj(T ))W 7→ (
∑

n

∞
∑

j=0

(Lj,n(a)T
j)W (−U)n)W

�

8.3. λ-ring.

Definition 8.3. A pre-λ-ring A, λT : A → Λ(T )(A) is a λ-ring if
λT : A → Λ(T )(A) is a λ-homomorphism.

Proposition 8.4. For any commutative ring A, (Λ(A), λU : Λ(T )(A) →
Λ(U)Λ(T )(A) is a λ-ring.

Proof. To avoid some confusion, we use lower case letters for inde-
terminate variables. Moreover, to distinquish all the lambda’s around

here, we denote by
◦

λ the lambda operation on Λ(A):
◦

λ(t,u) : Λ(t)A ∋ [a]t 7→ [[a]t]u ∈ Λ(u)Λ(t)A

where [a]t is the Teichmüller lift of a ∈ A in Λ(t)A. We need to verify
the commutativity of the following diagram:

Λ(u)(A)

◦

λ(t,u)
//

◦

λ(v,u)

��

Λ(t)(Λ(u)A)

Λ(t)(
◦

λ(v,u))
��

Λ(v)Λ(u)A
◦

λ(t,v)

// Λ(t)(Λ(v)Λ(u)A)

which can be verified by a diagram chasing for generators [a]u(a ∈ A):

[a]u

◦

λ(t,u)
//

◦

λ(v,u)
��

[[a]u]t

Λ(t)(
◦

λ(v,u))
��

[[a]u]v
λ(t,v)

// [[[a]u]v]t

�

——
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8.4. Idempotents. We are going to decompose the ring of Witt vec-
tors W1(A). Before doing that, we review facts on idempotents. Recall
that an element x of a ring is said to be idempotent if x2 = x.

Theorem 8.5. Let R be a commutative ring. Let e ∈ R be an
idempotent. Then:

(1) ẽ = 1 − e is also an idempotent. (We call it the complemen-
tary idempotent of e.)

(2) e, ẽ satisfies the following relations:

e2 = 1, ẽ2 = 1, eẽ = 0.

(3) R admits an direct product decomposition:

R = (Re)× (Rẽ)

Definition 8.6. For any ring R, we define a partial order on the
idempotents of if as follows:

e � f ⇐⇒ ef = f

It is easy to verify that the relation � is indeed a partial order. We
note also that, having defined the order on the idempotents, for any
given family {eλ} of idempotents we may refer to its “supremum” ∨eλ
and its“infimum” ∧eλ. (We are not saying that they always exist: they
may or may not exist. ) When the ring R is topologized, then we may
also discuss them by using limits,

8.5. Playing with idempotents in the ring of Witt vectors.

Definition 8.7. Let A be a commutative ring. For any a ∈ A, we
denote by [a] the element of W1(A) defined as follows:

[a] = (1− aT )W

We call [a] the “Teichmüller lift” of a.

Lemma 8.8. Let A be a commutative ring. Then:

(1) W1(A) is a commutative ring with the zero element [0] and the
unity [1].

(2) For any a, b ∈ A, we have

[a] · [b] = [ab]

�

Proposition 8.9. Let A be a commutative ring. If n is a positive
integer which is invertible in A, then n is invertible in W1(A). To be
more precise, we have

1

n
· [1] =

(

(1− T )
1
n

)

W
=

(

(1 +

∞
∑

j=1

(

1
n

j

)

(−T )j

)

W

.

Proof. It is easy to find out, by using iterative approximation, an
element x of A[[T ]] such that

(1 + x)n = (1− T ).

It also follows from the next lemma. �

Lemma 8.10. Let n be a positive integer. Let k be a non negative
integer. Then we have always

(

1
n

k

)

∈ Z

[

1

n

]

.
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Proof.
(

1
n

k

)

=
1
n
( 1
n
− 1) · · · ( 1

n
− (k − 1))

k!

=
1

nk

(1(1− n)(1− 2n) . . . (1− (k − 1)n)

k!

So the result follows from the next sublemma. �

Sublemma 8.11. Let n be a positive integer. Let k be a non nega-
tive integer. Let {aj}

k
j=1 ⊂ Z be an arithmetic progression of common

difference n. Then:

(1) For any positive integer m which is relatively prime to n, we
have

#{j; m|aj } ≥

⌊

k

m

⌋

(2) For any prime p which does not divide n, let us define

ck,p =

∞
∑

i=1

⌊
k

pi
⌋

(which is evidently a finite sum in practice.) Then

pck,p|

k
∏

j=1

aj

(3)

pck,p|k!, pck,p+1 ∤ k!

(4)
∏k

j=1 aj

k!
∈ Z(p)

Proof. (1) Let us put t = ⌊ k
m
⌋. Then we divide the set of first

kt-terms of the sequence {aj} into disjoint sets in the following way.

S0 = {a1, a2, . . . , am},

S1 = {am+1, am+2, am+m},

S2 = {a2m+1, a2m+2, a2m+m},

. . .

St−1 = {a(t−1)m+1, a(t−1)m+2, . . . , a(t−1)m+m}

Since m is coprime to n, we see that each of the Su gives a complete
representative of Z/nZ.
(2): Apply (1) to the cases where m = p, p2, p3, . . . and count the

powers of p which appear in
∏

aj .
(3): Easy. (4) is a direct consequence of (2),(3). �

Definition 8.12. For any positive integer n which is invertible in a
commutative ring A, we define an element en as follows:

en =
1

n
· (1− T n)W .

Lemma 8.13. Let A be a commutative ring. Then for any positive
integer n which is invertible in A, we have:

(1) en is an idempotent.
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(2)

en = (1−
1

n
T n + (higher order terms))W

(3) If n|m, with m invertible in A, then en ≥ em in the order of
idempotents.

Proof. if n|m, then we have

en · em = em.

�

It should be important to note that the range of the projection en is
easy to describe.

Proposition 8.14. Let n be an integer invertible in A. en ·W1(A) =
{(f)W |f ∈ 1 + T nA[[T n]]}

Proof. Easy. Compare with Lemma 8.24 below.
�

8.6. The ring of p-adic Witt vectors (when the characteristic of
the base ring A is p). Before proceeding further, let me illustrate the
idea. Proposition 8.9 tells us an existence of a set {en;n ∈ Z>0, p ∤ n}
of idempotents in W1(A) such that its order structure is somewhat
like the one found on the set {nN;n ∈ Z>0, p ∤ n}. Knowing that the
idempotents correspond to decompositions of W1(A), we may ask:

Problem 8.15. What is the partition of Z>0 generated by the sub-
sets {nN;n ∈ Z>0}?

To answer this problem, it would probably be better to find out, for
given positive number n which is coprime to p, what the set

Sn;p = nN \ (
⋃

n|m
n<m
p|m

mN)

should be. The answer is given by a fact which we know very well:
every positive integer may uniquely be written as

psk (s ∈ Z≥0, k ∈ Z>0, gcd(p, k) = 1),

Knowing that, we see that the set Sn;p as above is equal to

{psn; s ∈ Z≥0}.

The answer to the problem is now given as follows:

Z>0 =
∐

p∤n

{psn; s ∈ Z≥0}.

The same story applies to the ring W1(A) of universal Witt vec-
tors for a ring A of characteristic p. We should have a direct product
expansion

W1(A) =
∏

p∤n

en;pW1(A)

where the idempotent en;p is defined by

en;p = en −
∨

n|m
n<m
p∤m

em
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Of course we need to consider infimum of infinite idempotents. We
leave it to an exercise:

Exercise 8.1. Show that the supremum
∨

n|m
n<m
p∤m

em = en −
∏

n|m
n<m
p∤m

(en − em)

exists. In other words, show that the right hand side converges.

Proposition 8.16. Let p be a prime. Let A be an integral domain
of characteristic p. Let us define an idempotent f of W1(A) as follows.

f =
∨

n>1
p∤n

en(= [1]−
∏

p∤n
n>1

([1]− en))

Then f defines a direct product decomposition

W1(A) ∼= (f ·W1(A))× (([1]− f) ·W1(A)) .

We call the factor algebra ([1] − f) · W1(A) the ring W
(p)(A) of

p-adic Witt vectors.
The following proposition tells us the importance of the ring of p-adic

Witt vectors.

Proposition 8.17. Let p be a prime. Let A be a commutative ring
of characteristic p. For each positive integer k which is not divisible by
p, let us define an idempotent fk of W1(A) as follows.

fk =
∨

p∤n
n>1

ekn(= ek −
∏

p∤n
n>1

(ek − ekn))

Then fk defines a direct product decomposition

ekW1(A) ∼= (fk ·W1(A))× ((ek − fk) ·W1(A)) .

Furthermore, the factor algebra (ek − fk) ·W1(A) is isomorphic to the
ring W

(p)(A) of p-adic Witt vectors. Thus we have a direct product
decomposition

W1(A) ∼= W
(p)(A)N.

8.7. The ring of p-adic Witt vectors for general A. In the pre-
ceding subsection we have described how the ring W1(A) of universal
Witt vectors decomposes into a countable direct sum of the ring of
p-adic Witt vectors. In this subsection we show that the ring W (p)(A)
can be defined for any ring A (that means, without the assumption of
A being characteristic p).
We need some tools.

Definition 8.18. Let A be any commutative ring. Let n be a pos-
itive integer. Let us define additive operators Vn, Fn on W1(A) by the
following formula.

Vn((f(T ))W ) = (f(T n))W .

Fn((f(T ))W ) = (
∏

ζ∈µn

f(ζT 1/n))W

(The latter definition is a formal one. It certainly makes sense when
A is an algebra over C. Then the definition descends to a formal law
defined over Z so that Fn is defined for any ring A. In other words,
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Fn is actually defined to be the unique continuous additive map which
satisfies

Fn((1− aT l)) = ((1− am/lTm/n)ln/m)W (m = lcm(n, l)).

)

Lemma 8.19. Let p be a prime number. Let A be a commutative ring
of characteristic p. Then:

(1) We have

Fp(f(T )) = (f(T 1/p))p (∀f ∈ W1(A)).

in particular, Fp is an algebra endomorphism of W1(A) in this
case.

(2)

Vp(Fp((f)W ) = Fp(Vp((f)W )) = (f(T )p)W = p · (f(T ))W

Definition 8.20. Let A be any commutative ring. Let p be a prime
number. We denote by

W
(p)(A) = AN.

and define
πp : W1(A) → W

(p)(A)

by

πp

(

∞
∑

j=1

(1− xjT
j)

)

= (x1, xp, xp2, xp3 . . . ).

Lemma 8.21. Let us define polynomials αj(X, Y ) ∈ Z[X, Y ] by the
following relation.

(1− xT )(1− yT ) =
∞
∏

j=1

(1− αj(x, y)T
j).

Then we have the following rule for “carry operation”:

(1− xT n)W + (1− yT n)W =
∞
∑

j=1

(1− αj(x, y)T
jn).

Proposition 8.22. There exist unique binary operators + and · on
W

(p)(A) such that the following diagrams commute.

W1(A)×W1(A)
+

−−−→ W1(A)

πp





y

πp





y

W
(p)(A)×W

(p)(A)
+

−−−→ W
(p)(A)

W1(A)×W1(A)
·

−−−→ W1(A)

πp





y

πp





y

W
(p)(A)×W

(p)(A)
·

−−−→ W
(p)(A)

Proof. Using the rule as in the previous lemma, we see that ad-
dition descends to an addition of W(p)(A). It is easier to see that the
multiplication also descends.

�

Definition 8.23. For any commutative ring A, elements of W (p)(A)
are called p-adic Witt vectors over A. The ring (W (p)(A),+, ·) is
called the ring of p-adic Witt vectors over A.
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Lemma 8.24. Let p be a prime number. Let A be a ring of charac-
teristic p. Then for any n which is not divisible by p, the map

1

n
· Vn : W1(A) → W1(A)

is a “non-unital ring homomorphism”. Its image is equal to the range
of the idempotent en. That means,

Image(
1

n
· Vn) = en ·W1(A) = {

∑

j

(1− yjT
nj)W ; yj ∈ A}.

Proof. Vn is already shown to be additive. The following calcu-
lation shows that 1

n
· Vn preserves the multiplication: for any positive

integer a, b with lcm m and for any element x, y ∈ A, we have:

(
1

n
· Vn((1− xT a)W )) · (

1

n
· Vn((1− yT b)W ))

=(
1

n
· (1− xT an)W ) · (

1

n
· (1− yT bn)W )

=
1

n2
·
an · bn

nm

(

(1− xm/aym/bT nm)d
)

W

=
1

n
· Vn(((1− xT a)W · (1− yT b)W )

We then notice that the image of the unit element [1] of the Witt
algebra is equal to 1

n
Vn([1]) = en and that 1

n
V (enf) = enf for any

f ∈ W1(A). The rest is then obvious. �

In preparing from No.7 to No.10 of this lecture, the following reference
(especially its appendix) has been useful:

http://www.math.upenn.edu/~chai/course_notes/cartier_12_2004.pdf


	8.1. (A) as a -ring
	8.2. (A) as a pre–ring
	8.3. -ring
	8.4. Idempotents
	8.5. Playing with idempotents in the ring of Witt vectors
	8.6.  The ring of p-adic Witt vectors (when the characteristic of the base ring A is p)
	8.7. The ring of p-adic Witt vectors for general A

