\mathbb{Z}_p , \mathbb{Q}_p , AND THE RING OF WITT VECTORS

No.12.
extra: The ring of Witt vectors and \mathbb{Z}_p

PROPOSITION 12.1. Let $a, b \in A$. Assume $n, m \in \mathbb{Z}_{>0}$ such that gcd(n, m) = d, lcm(n, m) = l. Then:

(1) $(1 - T^n)_W (1 - T^m)_W = d \cdot (1 - T^l)_W$ (2) $(1 - aT^n)_W (1 - bT^m)_W = (1 - a^{l/n}b^{l/m}T^l)^d$

PROOF. We will firstly prove the proposition when $A = \mathbb{C}$. unity in \mathbb{C} . (1) Let ζ_n be a primitive root of unity in \mathbb{C} . Then we have:

$$(1 - T^{n})_{W}(1 - T^{m})_{W} = \sum_{k=0}^{n-1} (1 - \zeta_{n}^{k}T)_{W}(1 - T^{m})_{W} = \sum_{k=0}^{n-1} (1 - \zeta_{n}^{km}T^{m})_{W}.$$

Knowing that ζ_n^m is a primitive n'-th root of unity, we get the desited result.

(2)

$$(1 - aT^n)_W (1 - bT^m)_W$$

= $(1 - a^{1/n}T)_W (1 - T^n)_W \cdot (1 - b^{1/m}T)_W (1 - T^l)_W$

By functoriality, we see that the proposition is also valid over the polynomial ring $\mathbb{Z}[a, b]$. Then by functoriality we see that the result is also true for any ring A.

LEMMA 12.2. (=Proosition 8.9) Let n be a positive integer. If n is invertible in A, then it is also invertible in $\Lambda(A)$.

PROOF. Let us define $\alpha_1 = (1 - \frac{1}{n}T)$. Then we have

$$\alpha_1^n = (1 - \frac{1}{n}T)^n = (1 - T) \pmod{T^2}.$$

Let us now assume that for a postive integer k, we have an polynomial α_k such that

$$\alpha_k^n = (1 - T) \pmod{T^{k+1}}$$

holds. Then there exists an element $c_k \in A$ such that

$$\alpha_k^n = (1 - T) + c_k T^{k+1} \pmod{T^{k+2}}.$$

Let us put $\alpha_{k+1} = \alpha_k - \frac{1}{n}c_k T^{k+1}$.

$$\alpha_{k+1}^n \equiv \alpha_k^n - c_k T^{k+1} \equiv 1 \pmod{T^{k+2}}.$$

The statement now follows by the induction.

PROPOSITION 12.3. Let n be a positive integer which is invertible in A. The range $e_n\Lambda(R)$ of the idempotent e_n is isomorphic to $(1 + T^nA[[T^n]])$ via V_n

Let A be a ring. Then

$$A^{\mathbb{Z}_{>0}} \ni (a_1, a_2, \dots) \mapsto \sum_{j=1}^{\infty} (1 - a_j T^j)_W \in \Lambda(A)$$

is a bijection. In other words, $\{a_j\}$ plays the role of a coordinate of $\Lambda(A)$. We call the ring $\Lambda(A)$ with the coordinate given this way **the ring of Witt vectors**. In this lecture, we do not distinguish too much between W(A) and $\Lambda(A)$.

Verschiebung and Frobenius map.

DEFINITION 12.4. We define:

- (1) Verschiebung. $V_n : \Lambda(A) \ni (f(T))_W \mapsto (f(T^n))_W \in \Lambda(A)$
- (2) Frobenius map. $F_n: (1-aT)_W \mapsto (1-a^nT)_W$

PROPOSITION 12.5. Let A be a ring. Let n be a positive integer such that it is invertible in A. Then $e_n = \frac{1}{n}(1 - T^n)_W$ is an idempotent in $\Lambda(A)$. $e_n\Lambda(A)$ is equal to the image $\operatorname{Image}(V_n)$ of the Verschiebung map. In other words, it is isomorphic to $\Lambda(A)$ itself via the non-unital isomorphism V_n .