$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.12.extra: The ring of Witt vectors and \mathbb{Z}_{p}
Proposition 12.1. Let $a, b \in A$. Assume $n, m \in \mathbb{Z}_{>0}$ such that $\operatorname{gcd}(n, m)=d, \operatorname{lcm}(n, m)=l$. Then:
(1) $\left(1-T^{n}\right)_{W}\left(1-T^{m}\right)_{W}=d \cdot\left(1-T^{l}\right)_{W}$
(2) $\left(1-a T^{n}\right)_{W}\left(1-b T^{m}\right)_{W}=\left(1-a^{l / n} b^{l / m} T^{l}\right)^{d}$

Proof. We will firstly prove the proposition when $A=\mathbb{C}$. unity in \mathbb{C}. (1) Let ζ_{n} be a primitive root of unity in \mathbb{C}. Then we have:

$$
\left(1-T^{n}\right)_{W}\left(1-T^{m}\right)_{W}=\sum_{k=0}^{n-1}\left(1-\zeta_{n}^{k} T\right)_{W}\left(1-T^{m}\right)_{W}=\sum_{k=0}^{n-1}\left(1-\zeta_{n}^{k m} T^{m}\right)_{W} .
$$

Knowing that ζ_{n}^{m} is a primitive n^{\prime}-th root of unity, we get the desited result.
(2)

$$
\begin{aligned}
& \left(1-a T^{n}\right)_{W}\left(1-b T^{m}\right)_{W} \\
= & \left(1-a^{1 / n} T\right)_{W}\left(1-T^{n}\right)_{W} \cdot\left(1-b^{1 / m} T\right)_{W}\left(1-T^{l}\right)_{W} .
\end{aligned}
$$

By functoriality, we see that the proposition is also valid over the polynomial ring $\mathbb{Z}[a, b]$. Then by functoriality we see that the result is also true for any ring A.

Lemma 12.2. (=Proosition 8.9) Let n be a positive integer. If n is invertible in A, then it is also invertible in $\Lambda(A)$.

Proof. Let us define $\alpha_{1}=\left(1-\frac{1}{n} T\right)$. Then we have

$$
\alpha_{1}^{n}=\left(1-\frac{1}{n} T\right)^{n}=(1-T) \quad\left(\bmod T^{2}\right) .
$$

Let us now assume that for a postive integer k, we have an polynomial α_{k} such that

$$
\alpha_{k}^{n}=(1-T) \quad\left(\bmod T^{k+1}\right)
$$

holds. Then there exists an element $c_{k} \in A$ such that

$$
\alpha_{k}^{n}=(1-T)+c_{k} T^{k+1} \quad\left(\bmod T^{k+2}\right) .
$$

Let us put $\alpha_{k+1}=\alpha_{k}-\frac{1}{n} c_{k} T^{k+1}$.

$$
\alpha_{k+1}^{n} \equiv \alpha_{k}^{n}-c_{k} T^{k+1} \equiv 1 \quad\left(\bmod T^{k+2}\right) .
$$

The statement now follows by the induction.

Proposition 12.3. Let n be a positive integer which is invertible in A. The range $e_{n} \Lambda(R)$ of the idempotent e_{n} is isomorphic to $(1+$ $\left.T^{n} A\left[\left[T^{n}\right]\right]\right)$ via V_{n}

Ring of Witt vectors

Let A be a ring. Then

$$
A^{\mathbb{Z}>0} \ni\left(a_{1}, a_{2}, \ldots\right) \mapsto \sum_{j=1}^{\infty}\left(1-a_{j} T^{j}\right)_{W} \in \Lambda(A)
$$

is a bijection. In other words, $\left\{a_{j}\right\}$ plays the role of a coordinate of $\Lambda(A)$. We call the ring $\Lambda(A)$ with the coordinate given this way the ring of Witt vectors. In this lecture, we do not distinguish too much between $W(A)$ and $\Lambda(A)$.

Verschiebung and Frobenius map.
Definition 12.4. We define:
(1) Verschiebung. $V_{n}: \Lambda(A) \ni(f(T))_{W} \mapsto\left(f\left(T^{n}\right)\right)_{W} \in \Lambda(A)$
(2) Frobenius map. $F_{n}:(1-a T)_{W} \mapsto\left(1-a^{n} T\right)_{W}$

Proposition 12.5. Let A be a ring. Let n be a positive integer such that it is invertible in A. Then $e_{n}=\frac{1}{n}\left(1-T^{n}\right)_{W}$ is an idempotent in $\Lambda(A) . e_{n} \Lambda(A)$ is equal to the image Image $\left(V_{n}\right)$ of the Verschiebung map. In other words, it is isomorphic to $\Lambda(A)$ itself via the non-unital isomorphism V_{n}.

