$\mathbb{Z}_{p}, \mathbb{Q}_{p}$, AND THE RING OF WITT VECTORS

No.14:
The ring of Witt vectors when A is a ring of characteristic $p \neq 0$.
14.1. Idempotents. We are going to decompose the ring of Witt vectors $\Lambda(A)$. Before doing that, we review facts on idempotents. Recall that an element x of a ring is said to be idempotent if $x^{2}=x$.

Theorem 14.1. Let R be a commutative ring. Let $e \in R$ be an idempotent. Then:
(1) $\tilde{e}=1-e$ is also an idempotent. (We call it the complementary idempotent of e.)
(2) e, e satisfies the following relations:

$$
e^{2}=1, \quad \tilde{e}^{2}=1, \quad e \tilde{e}=0
$$

(3) R admits an direct product decomposition:

$$
R=(R e) \times(R \tilde{e})
$$

Definition 14.2. For any ring R, we define a partial order on the idempotents of if as follows:

$$
e \succeq f \Longleftrightarrow e f=f
$$

It is easy to verify that the relation \succeq is indeed a partial order. We note also that, having defined the order on the idempotents, for any given family $\left\{e_{\lambda}\right\}$ of idempotents we may refer to its "supremum" $V e_{\lambda}$ and its"infimum" $\wedge e_{\lambda}$. (We are not saying that they always exist: they may or may not exist.) When the ring R is topologized, then we may also discuss them by using limits. Note that our $\Lambda(A)$ for any ring A has the " T-adic topology".

14.2. Playing with idempotents in the ring of Witt vectors.

Definition 14.3. Let A be a commutative ring. For any $a \in A$, we denote by $[a]$ the element of $\Lambda(A)$ defined as follows:

$$
[a]=(1-a T)_{W}
$$

We call [a] the "Teichmüller lift" of a.
Lemma 14.4. Let A be a commutative ring. Then:
(1) $\Lambda(A)$ is a commutative ring with the zero element [0] and the unity [1].
(2) For any $a, b \in A$, we have

$$
[a] \cdot[b]=[a b]
$$

Proposition 14.5. Let A be a commutative ring. If n is a positive integer which is invertible in A, then n is invertible in $\Lambda(A)$. To be more precise, we have

$$
\frac{1}{n} \cdot[1]=\left((1-T)^{\frac{1}{n}}\right)_{W}=\left(\left(1+\sum_{j=1}^{\infty}\binom{\frac{1}{n}}{j}(-T)^{j}\right)_{W}\right.
$$

Proof. It is easy to find out, by using iterative approximation, an element x of $A[[T]]$ such that

$$
(1+x)^{n}=(1-T) .
$$

Definition 14.6. For any positive integer n which is invertible in a commutative ring A, we define an element e_{n} as follows:

$$
e_{n}=\frac{1}{n} \cdot\left(1-T^{n}\right)_{W}
$$

Lemma 14.7. Let A be a commutative ring. Then for any positive integer n which is invertible in A, we have:
(1) e_{n} is an idempotent.
(2)

$$
e_{n}=\left(1-\frac{1}{n} T^{n}+(\text { higher order terms })\right)_{W}
$$

(3) If $n \mid m$, with m invertible in A, then $e_{n} \geq e_{m}$ in the order of idempotents.

Proof. if $n \mid m$, then we have

$$
e_{n} \cdot e_{m}=e_{m} .
$$

It should be important to note that the range of the projection e_{n} is easy to describe.

Proposition 14.8. Let n be an integer invertible in A. $e_{n} \cdot \Lambda(A)=$ $\left\{(f)_{W} \mid f \in 1+T^{n} A\left[\left[T^{n}\right]\right]\right\}$

Proof. Easy. Compare with Lemma 14.15 below.
14.3. The ring of p-adic Witt vectors (when the characteristic of the base ring A is p). In this subsection we assume our ring A satisfies $p A=0$. Note that in that case $\mathbb{F}_{p} \subset A$ and that every integer m is invertible in A unless $p \mid m$.

Proposition 14.9. Let p be a prime. Let A be a ring with $p A=0$. Let us define an idempotent f of $\Lambda(A)$ as follows.

$$
f=\bigvee_{\substack{n>1 \\ p \nmid n}} e_{n}\left(=[1]-\prod_{\substack{p \nmid n \\ n>1}}\left([1]-e_{n}\right)\right)
$$

Then f defines a direct product decomposition

$$
\Lambda(A) \cong(f \cdot \Lambda(A)) \times(([1]-f) \cdot \Lambda(A)) .
$$

We call the factor algebra $([1]-f) \cdot \Lambda(A)$ the $\operatorname{ring} \mathcal{W}^{(p)}(A)$ of p-adic Witt vectors.

The following proposition tells us the importance of the ring of p-adic Witt vectors.

Proposition 14.10. Let p be a prime. Let A be a commutative ring with $p A=0$. For each positive integer k which is not divisible by p, let us define an idempotent f_{k} of $\Lambda(A)$ as follows.

$$
f_{k}=\bigvee_{\substack{p \nmid n \\ n>1}} e_{k n}\left(=e_{k}-\prod_{\substack{p \nmid n \\ n>1}}\left(e_{k}-e_{k n}\right)\right)
$$

Then f_{k} defines a direct product decomposition

$$
e_{k} \Lambda(A) \cong\left(f_{k} \cdot \Lambda(A)\right) \times\left(\left(e_{k}-f_{k}\right) \cdot \Lambda(A)\right) .
$$

Furthermore, the factor algebra $\left(e_{k}-f_{k}\right) \cdot \Lambda(A)$ is isomorphic to the ring $\mathcal{W}^{(p)}(A)$ of p-adic Witt vectors. Thus we have a direct product decomposition

$$
\Lambda(A) \cong \mathcal{W}^{(p)}(A)^{\mathbb{N}}
$$

Proposition 14.11. There exists a bijection $\varphi: A^{\mathbb{N}} \ni\left(a_{r}\right)_{r \in \mathbb{N}} \mapsto$ $\sum_{r}\left(1-a_{r} T^{p^{r}}\right)_{W} \in \mathcal{W}^{(p)}(A)$. We may thus regard $\left(a_{r}\right)_{r \in N}$ as a coordinate of $\varphi\left(\left(a_{r}\right)\right) \in \mathcal{W}^{(p)}(A)$.

14.4. Some operations on $\Lambda(A)$.

Definition 14.12. Let A be any commutative ring. Let n be a positive integer. Let us define additive operators V_{n}, F_{n} on $\Lambda(A)$ by the following formula.

$$
\begin{gathered}
V_{n}\left((f(T))_{W}\right)=\left(f\left(T^{n}\right)\right)_{W} \\
F_{n}\left((f(T))_{W}\right)=\left(\prod_{\zeta \in \mu_{n}} f\left(\zeta T^{1 / n}\right)\right)_{W}
\end{gathered}
$$

(The latter definition is a formal one. It certainly makes sense when A is an algebra over \mathbb{C}. Then the definition descends to a formal law defined over \mathbb{Z} so that F_{n} is defined for any ring A. In other words, F_{n} is actually defined to be the unique continuous additive map which satisfies

$$
F_{n}\left(\left(1-a T^{l}\right)_{)}=\left(\left(1-a^{m / l} T^{m / n}\right)^{l n / m}\right)_{W} \quad(m=\operatorname{lcm}(n, l))\right.
$$

)
Lemma 14.13. Let p be a prime number. Let A be a commutative ring with $p A=0$. Then:
(1) We have

$$
F_{p}(f(T))=\left(f\left(T^{1 / p}\right)\right)^{p} \quad(\forall f \in \Lambda(A))
$$

in particular, F_{p} is an algebra endomorphism of $\Lambda(A)$ in this case.
(2)

$$
V_{p}\left(F_{p}\left((f)_{W}\right)=F_{p}\left(V_{p}\left((f)_{W}\right)\right)=\left(f(T)^{p}\right)_{W}=p \cdot(f(T))_{W}\right.
$$

Definition 14.14. For any commutative ring A with $p A=0$, elements of $W^{(p)}(A)$ are called p-adic Witt vectors over A. The ring $\left(W^{(p)}(A),+, \cdot\right)$ is called the ring of p-adic Witt vectors over A.

Lemma 14.15. Let p be a prime number. Let A be a ring with $p A=0$. Then for any n which is not divisible by p, the map

$$
\frac{1}{n} \cdot V_{n}: \Lambda(A) \rightarrow \Lambda(A)
$$

is a "non-unital ring homomorphism". Its image is equal to the range of the idempotent e_{n}. That means,

$$
\operatorname{Image}\left(\frac{1}{n} \cdot V_{n}\right)=e_{n} \cdot \Lambda(A)=\left\{\sum_{j}\left(1-y_{j} T^{n j}\right)_{W} ; y_{j} \in A\right\}
$$

Proof. V_{n} is already shown to be additive. The following calculation shows that $\frac{1}{n} \cdot V_{n}$ preserves the multiplication: for any positive integer a, b with $1 \mathrm{~cm} m$ and for any element $x, y \in A$, we have:

$$
\begin{aligned}
& \left(\frac{1}{n} \cdot V_{n}\left(\left(1-x T^{a}\right)_{W}\right)\right) \cdot\left(\frac{1}{n} \cdot V_{n}\left(\left(1-y T^{b}\right)_{W}\right)\right) \\
= & \left(\frac{1}{n} \cdot\left(1-x T^{a n}\right)_{W}\right) \cdot\left(\frac{1}{n} \cdot\left(1-y T^{b n}\right)_{W}\right) \\
= & \frac{1}{n^{2}} \cdot \frac{a n \cdot b n}{n m}\left(\left(1-x^{m / a} y^{m / b} T^{n m}\right)^{d}\right)_{W} \\
= & \frac{1}{n} \cdot V_{n}\left(\left(\left(1-x T^{a}\right)_{W} \cdot\left(1-y T^{b}\right)_{W}\right)\right.
\end{aligned}
$$

We then notice that the image of the unit element [1] of the Witt algebra is equal to $\frac{1}{n} V_{n}([1])=e_{n}$ and that $\frac{1}{n} V\left(e_{n} f\right)=e_{n} f$ for any $f \in \Lambda(A)$. The rest is then obvious.

